Aptitude Overflow
Login
Register
@
Dark Mode
Profile
Edit my Profile
Messages
My favorites
Register
Activity
Questions
Unanswered
Tags
Subjects
Users
Ask
Blogs
Exams
Dark Mode
Recent questions tagged polynomials
0
votes
1
answer
1
NIELIT 2019 Feb Scientist D - Section D: 7
Find all the polynomials with real coefficients $P\left(x \right)$ such that $P\left(x^{2}+x+1 \right)$ divides $P\left(x^{3}-1 \right)$. $ax^{n}$ $ax^{n+2}$ $ax$ $2ax$
Lakshman Bhaiya
asked
in
Quantitative Aptitude
Apr 3, 2020
by
Lakshman Bhaiya
13.6k
points
559
views
nielit2019feb-scientistd
quantitative-aptitude
polynomials
0
votes
1
answer
2
NIELIT 2019 Feb Scientist D - Section D: 15
The roots of the equation $x^{2/3}+x^{1/3}-2=0$ are : $1, -8$ $-1, -2$ $\frac{2}{3}, \frac{1}{3}$ $-2, -7$
Lakshman Bhaiya
asked
in
Quantitative Aptitude
Apr 3, 2020
by
Lakshman Bhaiya
13.6k
points
575
views
nielit2019feb-scientistd
quantitative-aptitude
polynomials
1
vote
1
answer
3
NIELIT 2019 Feb Scientist D - Section D: 18
If $ x^{a}=y^{b}=z^{c} $ and $ y^{2}=zx $ then the value of $ \frac{1}{a} + \frac{1}{c}$ is : $ \frac{b}{2}$ $ \frac{c}{2}$ $ \frac{2}{b}$ $ \frac{2}{a}$
Lakshman Bhaiya
asked
in
Quantitative Aptitude
Apr 3, 2020
by
Lakshman Bhaiya
13.6k
points
506
views
nielit2019feb-scientistd
quantitative-aptitude
polynomials
0
votes
1
answer
4
NIELIT 2019 Feb Scientist D - Section D: 28
$\left [\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^{2}}+\frac{4}{1+x^{4}}+\frac{8}{1+x^{8}} \right ]$ equal to : $1$ $0$ $\frac{8}{1-x^{8}}$ $\frac{16}{1-x^{16}}$
Lakshman Bhaiya
asked
in
Quantitative Aptitude
Apr 3, 2020
by
Lakshman Bhaiya
13.6k
points
506
views
nielit2019feb-scientistd
quantitative-aptitude
polynomials
1
vote
1
answer
5
NIELIT 2019 Feb Scientist D - Section C: 3
If $t^{2}-4t+1=0$, then the value of $\left[t^{3}+1/t^{3} \right]$ is : $44$ $48$ $52$ $64$
Lakshman Bhaiya
asked
in
Quantitative Aptitude
Apr 3, 2020
by
Lakshman Bhaiya
13.6k
points
544
views
nielit2019feb-scientistd
polynomials
1
vote
1
answer
6
NIELIT 2019 Feb Scientist D - Section C: 26
If $a^{x}=b$, $b^{y}=c$ and $c^{z}=a$, then the value of $xyz$ is : $0$ $1$ $\frac{1}{3}$ $\frac{1}{2}$
Lakshman Bhaiya
asked
in
Quantitative Aptitude
Apr 3, 2020
by
Lakshman Bhaiya
13.6k
points
656
views
nielit2019feb-scientistd
polynomials
To see more, click for the
full list of questions
or
popular tags
.
Quick search syntax
tags
tag:apple
author
user:martin
title
title:apple
content
content:apple
exclude
-tag:apple
force match
+apple
views
views:100
score
score:10
answers
answers:2
is accepted
isaccepted:true
is closed
isclosed:true
Subjects
All categories
English Language
(1.7k)
Analytical Aptitude
(1.6k)
Quantitative Aptitude
(2.0k)
Spatial Aptitude
(8)
General Awareness
(139)
Computer Knowledge
(69)
Attitude and Leadership
(120)
Teaching Skills
(0)
Others
(0)
Recent Posts
UPSC CDS II 2021
HOW TO PREPARE FOR IELTS?
Previous Year CAT Papers
GRE Exam: New Test Pattern 2016 – 2017
Raise your Visibility to Attract GRE Test Takers
Recent questions tagged polynomials