# NIELIT 2019 Feb Scientist D - Section C: 3

690 views

If $t^{2}-4t+1=0$, then the value of $\left[t^{3}+1/t^{3} \right]$ is :

1. $44$
2. $48$
3. $52$
4. $64$

Given that= $t^2-4t+1=0$

or $t^2+1=4t$

dividing by $t$ in both side we get;

$t+\frac{1}{t}=4$

taking cube in bothe side we get:

$\implies t^3+\frac{1}{t^3}+3*t*\frac{1}{t}*(t+\frac{1}{t})=64$

$\implies t^3+\frac{1}{t^3}+3*4=64$

$\implies t^3+\frac{1}{t^3}=64-12=52$

Option $C$ is correct here.

$\text{Note :$(a+b)^3=a^3+b^3+3ab(a+b)$}$

## Related questions

831
views
831 views
If $a^{x}=b$, $b^{y}=c$ and $c^{z}=a$, then the value of $xyz$ is :$0$$1$$\frac{1}{3}$$\frac{1}{2} 714 views 1 answers 0 votes 714 views Find all the polynomials with real coefficients P\left(x \right) such that P\left(x^{2}+x+1 \right) divides P\left(x^{3}-1 \right).ax^{n}$$ax^{n+2}$$ax$$2ax$
751
views
The roots of the equation $x^{2/3}+x^{1/3}-2=0$ are :$1, -8$$-1, -2$$\frac{2}{3}, \frac{1}{3}$$-2, -7 640 views 1 answers 1 votes 640 views If x^{a}=y^{b}=z^{c} and y^{2}=zx then the value of \frac{1}{a} + \frac{1}{c} is : \frac{b}{2}$$ \frac{c}{2}$$\frac{2}{b}$$ \frac{2}{a}$
$\left [\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^{2}}+\frac{4}{1+x^{4}}+\frac{8}{1+x^{8}} \right ]$ equal to :$1$$0$$\frac{8}{1-x^{8}}$$\frac{16}{1-x^{16}}$