CAT 2013: 1
Functions $g$ and $h$ are defined on $n$ constants, $a_0,a_1,a_2,a_3,\dots a_{n−1}$ ... the remainder when $p+q$ is divided by $n$. If $n=10$, find the value of $g(g(a_2,a_8),g(a_1,a_7))$, $a_9$ $a_7$ $a_2$ $a_0$
Functions $g$ and $h$ are defined on $n$ constants, $a_0,a_1,a_2,a_3,\dots a_{n−1}$, as follows: $\begin{array} g(a_p,a_q) & =a_{\mid p−q\mid}, \text{if } \mid p-q \mid \leq (n-4) \text{ and } \\ &=a_{n−\mid p−q\mid}, \text{if } \mid p-q\mid>(n-4) \end{array}$ ... $p+q$ is divided by $n$. If $n=10$, find the value of $g(g(a_2,a_8),g(a_1,a_7))$, $a_9$ $a_7$ $a_2$ $a_0$
asked
Mar 6, 2020
in Quantitative Aptitude
admin
2.4k points
●69 ●121 ●231
99 views