# CAT 2021 Set-2 | Quantitative Aptitude | Question: 6

1 vote
47 views

For a real number $x$ the condition $|3x – 20| + |3x – 40| = 20$ necessarily holds if

1. $9 < x < 14$
2. $6 < x < 11$
3. $7 < x < 12$
4. $10 < x < 15$

retagged

1 vote
Given that, $|3x-20| + |3x-40| = 20 ; x \in \mathbb{R} \quad \longrightarrow (1)$

We know that $,|x| = \left\{\begin{matrix} x\;;&x\geq 0 \\ -x\;; &x<0 \end{matrix}\right.$

We can open mod as positive and negative. There are four such cases.

$\textbf{Case 1:}\;\text{ Positive, Positive}$

$\Rightarrow 3x – 20 + 3x – 40 = 20$

$\Rightarrow 6x – 60 = 20$

$\Rightarrow 6x = 80$

$\Rightarrow \boxed{x = \frac{40}{3} = 13.33}$

$\textbf{Case 2:}\;\text{ Positive, Negative}$

$\Rightarrow 3x – 20 – (3x – 40) = 20$

$\Rightarrow 3x – 20 – 3x + 40 = 20$

$\Rightarrow \boxed{20 = 20\; {\color{Green} {\text{(True)}}}}$

$\textbf{Case 3:}\;\text{ Negative, Positive}$

$\Rightarrow \;– (3x – 20) + 3x – 40 = 20$

$\Rightarrow\; – 3x + 20 + 3x – 40 = 20$

$\Rightarrow \boxed{- 20 = 20\;\color{Red}{\text{(False)}}}$

$\textbf{Case 4:}\;\text{ Negative, Negative}$

$\Rightarrow \;– (3x – 20) – (3x – 40) = 20$

$\Rightarrow \;– 3x + 20 – 3x + 40 = 20$

$\Rightarrow \;– 6x =\; – 40$

$\Rightarrow \boxed{x = \frac{20}{3} = 6.66}$

$\therefore$ $\boxed{7 < x < 12}$

Correct Answer $: \text{C}$
10.1k points 4 8 30
edited

## Related questions

1
36 views
The number of distinct pairs of integers $(m,n)$ satisfying $|1 + mn| < |m + n| < 5$ is
1 vote
2
66 views
If $3x + 2|y| + y = 7$ and $x + |x| + 3y = 1,$ then $x + 2y$ is $\frac{8}{3}$ $1$ $– \frac{4}{3}$ $0$
1 vote
Consider the pair of equations: $x^{2} – xy – x = 22$ and $y^{2} – xy + y = 34.$ If $x>y,$ then $x – y$ equals $7$ $8$ $6$ $4$
Anil, Bobby and Chintu jointly invest in a business and agree to share the overall profit in proportion to their investments. Anil's share of investment is $70 \%.$ His share of profit decreases by $₹ \; 420$ if the overall profit goes down from $18 \%$ to $15 \%.$ Chintu's share of ... goes up from $15 \%$ to $17 \%.$ The amount, $\text{in INR},$ invested by Bobby is $2400$ $2200$ $2000$ $1800$
If a rhombus has area $12 \; \text{sq cm}$ and side length $5 \; \text{cm},$ then the length, $\text{in cm},$ of its longer diagonal is $\sqrt{13} + \sqrt{12}$ $\sqrt{37} + \sqrt{13}$ $\frac{\sqrt{37} + \sqrt{13}}{2}$ $\frac{\sqrt{13} + \sqrt{12}}{2}$