search
Log In
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
1 vote
82 views

If a rhombus has area $12 \; \text{sq cm}$ and side length $5 \; \text{cm},$ then the length, $\text{in cm},$ of its longer diagonal is

  1. $\sqrt{13} + \sqrt{12}$
  2. $\sqrt{37} + \sqrt{13}$
  3. $\frac{\sqrt{37} + \sqrt{13}}{2}$
  4. $\frac{\sqrt{13} + \sqrt{12}}{2}$
in Quantitative Aptitude 2.7k points 5 79 342
retagged by
82 views

1 Answer

1 vote

Given that, the area of rhombus $= 12\; \text{cm}^{2},$ and side length $= 5\;\text{cm.}$

Let the diagonal length of the rhombus be $2a\;\text{cm},\;2b\;\text{cm}, (a>b)$

Let’s draw the diagram.



$\triangle \text{AOB}$ is a right-angle triangle. We can apply the Pythagorean theorem.

$\text{(Hypotenuse)}^{2} = \text{(Perpendicular)}^{2} + \text{(Base)}^{2}$

$\Rightarrow 5^{2} = a^{2} + b^{2}$

$\Rightarrow \boxed{a^{2} + b^{2} = 25}\quad \longrightarrow (1)$

The area of rhombus $= \dfrac{\text{Product of diagonal}}{2}$

$\Rightarrow 12 = \frac{2a \times 2b}{2}$

$\Rightarrow \boxed{ab = 6}$

From equation $(1),$

$a^{2} + b^{2} = 25$

$\Rightarrow (a+b)^{2} – 2ab = 25$

$\Rightarrow (a+b)^{2} – 2(6) = 25\quad [\because ab=6]$

$\Rightarrow (a+b)^{2} = 25 + 12$

$\Rightarrow (a+b)^{2} = 37$

$\Rightarrow \boxed{a+b = \sqrt{37}}\quad \longrightarrow (2)$

Again, from equation $(1),$

$a^{2} + b^{2} = 25$

$\Rightarrow (a-b)^{2} + 2ab = 25$

$\Rightarrow (a-b)^{2} + 2(6) = 25\quad [\because ab=6]$

$\Rightarrow (a-b)^{2} = 25 - 12$

$\Rightarrow (a-b)^{2} = 13$

$\Rightarrow \boxed{a-b = \sqrt{13}}\quad \longrightarrow (3)$

Adding the equation $(2)$ and $(3).$

$\begin{array}{} a+b = \sqrt{37} \\ a-b = \sqrt{13} \\\hline  \end{array}$

$\boxed{2a = \sqrt{37} + \sqrt{13}}$

Subtract the equation $(3),$ from equation $(2).$

$\begin{array}{} a+b = \sqrt{37} \\ a-b = \sqrt{13} \\  – \;\;\; + \qquad – \\\hline  \end{array}$

$\boxed{2b = \sqrt{37} - \sqrt{13}}$

$\therefore$ The length of the longer diagonal $= 2a = (\sqrt{37} + \sqrt{13})\;\text{cm.}$

Correct Answer $:\text{B}$

10.1k points 4 8 30
edited by
Answer:

Related questions

1 vote
1 answer
1
70 views
The sides $\text{AB}$ and $\text{CD}$ of a trapezium $\text{ABCD}$ are parallel, with $\text{AB}$ being the smaller side. $\text{P}$ is the midpoint of $\text{CD}$ and $\text{ABPD}$ is a parallelogram. If the difference between the areas of the parallelogram $\text{ABPD}$ and the ... $\text{in sq cm},$ of the trapezium $\text{ABCD}$ is $25$ $30$ $40$ $20$
asked Jan 20 in Quantitative Aptitude soujanyareddy13 2.7k points 5 79 342 70 views
1 vote
1 answer
2
84 views
Let $\text{D}$ and $\text{E}$ be points on sides $\text{AB}$ and $\text{AC},$ respectively, of a triangle $\text{ABC},$ such that $\text{AD}$ : $\text{BD} = 2 : 1$ and $\text{AE}$ : $\text{CE} = 2 : 3.$ If the area of the triangle $\text{ADE}$ is $8 \; \text{sq cm},$ then the area of the triangle $\text{ABC, in sq cm},$ is
asked Jan 20 in Quantitative Aptitude soujanyareddy13 2.7k points 5 79 342 84 views
1 vote
1 answer
3
44 views
Consider the pair of equations: $x^{2} – xy – x = 22$ and $y^{2} – xy + y = 34.$ If $x>y,$ then $x – y$ equals $7$ $8$ $6$ $4$
asked Jan 20 in Quantitative Aptitude soujanyareddy13 2.7k points 5 79 342 44 views
1 vote
1 answer
4
74 views
Anil, Bobby and Chintu jointly invest in a business and agree to share the overall profit in proportion to their investments. Anil's share of investment is $70 \%.$ His share of profit decreases by $₹ \; 420$ if the overall profit goes down from $18 \%$ to $15 \%.$ Chintu's share of ... goes up from $15 \%$ to $17 \%.$ The amount, $\text{in INR},$ invested by Bobby is $2400$ $2200$ $2000$ $1800$
asked Jan 20 in Quantitative Aptitude soujanyareddy13 2.7k points 5 79 342 74 views
1 vote
1 answer
5
73 views
The number of ways of distributing $15$ identical balloons, $6$ identical pencils and $3$ identical erasers among $3$ children, such that each child gets at least four balloons and one pencil, is
asked Jan 20 in Quantitative Aptitude soujanyareddy13 2.7k points 5 79 342 73 views
...