# CAT 2021 Set-3 | Quantitative Aptitude | Question: 19

1 vote
66 views

If $3x + 2|y| + y = 7$ and $x + |x| + 3y = 1,$ then $x + 2y$ is

1. $\frac{8}{3}$
2. $1$
3. $– \frac{4}{3}$
4. $0$

retagged

1 vote

Given that,

• $3x + 2|y| + y = 7 \quad \longrightarrow (1)$
• $x + |x| + 3y = 1 \quad \longrightarrow (2)$

We know that, $|x| = \left\{\begin{matrix} x\;; &x \geq 0 \\ -x \;;& x<0 \end{matrix}\right.$

$\textbf{Case 1:} \; x \geq 0\;;\; y\geq 0$

$\begin{array}{} 3x+3y=7 \\ 2x + 3y = 1\\ \; – \qquad – \quad\; – \\\hline \boxed{x=6}, \; \boxed{ {\color{Red}{y= \frac{-11}{3}\; (\text{rejected})}}} \end{array}$

$\textbf{Case 2:} \quad x \geq 0 \; ;\; y< 0$

$\begin{array}{} (3x – y = 7) \times 3 \\ 2x + 3y =1 \\\hline 9x - 3y = 21 \\ 2x + 3y = 1 \\\hline 11x = 22\; (\text{Adding the equations)} \end{array}$

$\boxed{x=2}, \quad \boxed{y= -1}$

$\therefore$ The value of $x + 2y = 2-2 =0.$

$\textbf{Case 3:} \quad x<0 \; ; y\geq 0$

Now, $3y=1 \Rightarrow \boxed{y = \frac{1}{3}}$

And, $3x + 3y =7$

$\Rightarrow 3x+1=7$

$\Rightarrow \boxed{{\color{Red} {x=2\;\text{(rejected)}}}}$

$\textbf{Case 4:} \quad x<0 \; ; y< 0$

Now, $3y=1 \Rightarrow \boxed{{\color{Red} {y = \frac{1}{3}\;\text{(rejected)}}}}$

And, $3x - y =7$

$\Rightarrow 3x-\frac{1}{3}=7$

$\Rightarrow 3x=7+\frac{1}{3}$

$\Rightarrow 3x=\frac{22}{3} \Rightarrow \boxed{{\color{Red} {x=\frac{22}{9}\;\text{(rejected)}}}}$

Correct Answer $:\text{D}$

10.1k points 4 8 30
edited

## Related questions

1
36 views
The number of distinct pairs of integers $(m,n)$ satisfying $|1 + mn| < |m + n| < 5$ is
1 vote
2
65 views
Consider a sequence of real numbers $x_{1}, x_{2}, x_{3}, \dots$ such that $x_{n+1} = x_{n} + n – 1$ for all $n \geq 1.$ If $x_{1} = -1$ then $x_{100}$ is equal to $4950$ $4850$ $4849$ $4949$
1 vote
Anil can paint a house in $12 \; \text{days}$ while Barun can paint it in $16 \; \text{days}.$ Anil, Barun, and Chandu undertake to paint the house for $₹ \; 24000$ and the three of them together complete the painting in $6 \; \text{days}.$ If Chandu is paid in proportion to the work done by him, then the amount in $\text{INR}$ received by him is
For a real number $a,$ if $\dfrac{\log_{15}a + \log_{32}a}{(\log_{15}a)(\log_{32}a)} = 4$ then $a$ must lie in the range $a>5$ $3<a<4$ $4<a<5$ $2<a<3$
In a triangle $\text{ABC}, \angle \text{BCA} = 50^{\circ}. \text{D}$ and $\text{E}$ are points on $\text{AB}$ and $\text{AC},$ respectively, such that $\text{AD = DE}.$ If $\text{F}$ is a point on $\text{BC}$ such that $\text{BD = DF},$ then $\angle \text{FDE, in degrees},$ is equal to $96$ $72$ $80$ $100$