# CAT 2021 Set-3 | Quantitative Aptitude | Question: 3

940 views

For a real number $a,$ if $\dfrac{\log_{15}a + \log_{32}a}{(\log_{15}a)(\log_{32}a)} = 4$ then $a$ must lie in the range

1. $a>5$
2. $3<a<4$
3. $4<a<5$
4. $2<a<3$

Given that, $\dfrac{\log_{15}{a} + \log_{32}{a}}{(\log_{15}{a})(\log_{32}{a})} = 4$

$\Rightarrow \log_{15}{a} + \log_{32}{a} = 4\left[(\log_{15}{a})(\log_{32}{a})\right]$

$\Rightarrow \dfrac{\log_{c}{a}}{\log_{c}{15}} = 4 \times \dfrac{\log_{c}{a}}{\log_{c}{15}} \times \dfrac{\log_{c}{a}}{\log_{c}{32}}$

$\Rightarrow \require{cancel} \cancel{\log_{c}{a}} \left[\dfrac{\log_{c}{32} + \log_{c}{15}}{\cancel{(\log_{c}{15})} \cdot \cancel{(\log_{c}{32})}}\right] = 4 \times \dfrac{\cancel{\log_{c}{a}}}{\cancel{\log_{c}{15}}} \times \dfrac{\log_{c}{a}}{\cancel{\log_{c}{32}}}$

$\Rightarrow \log_{c}{32} + \log_{c}{15} = 4\log_{c}{a}$

$\Rightarrow \log_{c}{480} = \log_{c}{a}^{4}$

$\Rightarrow \boxed{a^{4} = 480}$

We know that,

• $4^{4} = 256$
• $5^{4} = 625$

$\therefore \boxed{4<a<5}$

Correct Answer $:\text{C}$

Consider a sequence of real numbers $x_{1}, x_{2}, x_{3}, \dots$ such that $x_{n+1} = x_{n} + n – 1$ for all $n \geq 1.$ If $x_{1} = -1$ then $x_{100}$ is equal to $4... 1 votes 1 answer 2 807 views Anil can paint a house in$12 \; \text{days}$while Barun can paint it in$16 \; \text{days}.$Anil, Barun, and Chandu undertake to paint the house for$ ₹ \; 24000$an... 1 votes 1 answer 3 681 views In a triangle$\text{ABC}, \angle \text{BCA} = 50^{\circ}. \text{D}$and$\text{E}$are points on$\text{AB}$and$\text{AC},$respectively, such that$\text{AD = DE}.$I... 1 votes 1 answer 4 1,098 views Bank$\text{A}$offers$6 \%$interest rate per annum compounded half yearly. Bank$\text{B}$and Bank$\text{C}$offer simple interest but the annual interest rate offer... 1 votes 1 answer 5 1,296 views Let$\text{ABCD}$be a parallelogram. The lengths of the side$\text{AD}$and the diagonal$\text{AC}$are$10 \; \text{cm}$and$20 \; \text{cm},\$ respectively. If the a...