search
Log In
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
0 votes
133 views

The roots of the equation $x^{2/3}+x^{1/3}-2=0$ are :

  1. $1, -8$
  2. $-1, -2$
  3. $\frac{2}{3}, \frac{1}{3}$
  4. $-2, -7$
in Quantitative Aptitude 9.4k points 41 652 824
recategorized by
133 views

1 Answer

0 votes
(A) $1, -8$

$x^{\frac{2}{3}} + x^{\frac{1}{3}} – 2 = 0\\  \> \\  \text{put }x=1 \\  \implies 1 + 1-2 = 0 \\ \> \\ \text{put } x= -8 \\ \implies (-8)^{\frac{2}{3}} + (-8)^{\frac{1}{3}} – 2 = 4-2 -2 = 0$
518 points 1 2 12

Related questions

0 votes
1 answer
1
110 views
Find all the polynomials with real coefficients $P\left(x \right)$ such that $P\left(x^{2}+x+1 \right)$ divides $P\left(x^{3}-1 \right)$. $ax^{n}$ $ax^{n+2}$ $ax$ $2ax$
asked Apr 3, 2020 in Quantitative Aptitude Lakshman Patel RJIT 9.4k points 41 652 824 110 views
1 vote
1 answer
2
132 views
If $ x^{a}=y^{b}=z^{c} $ and $ y^{2}=zx $ then the value of $ \frac{1}{a} + \frac{1}{c}$ is : $ \frac{b}{2}$ $ \frac{c}{2}$ $ \frac{2}{b}$ $ \frac{2}{a}$
asked Apr 3, 2020 in Quantitative Aptitude Lakshman Patel RJIT 9.4k points 41 652 824 132 views
0 votes
1 answer
3
90 views
$\left [\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^{2}}+\frac{4}{1+x^{4}}+\frac{8}{1+x^{8}} \right ]$ equal to : $1$ $0$ $\frac{8}{1-x^{8}}$ $\frac{16}{1-x^{16}}$
asked Apr 3, 2020 in Quantitative Aptitude Lakshman Patel RJIT 9.4k points 41 652 824 90 views
1 vote
1 answer
4
149 views
If $t^{2}-4t+1=0$, then the value of $\left[t^{3}+1/t^{3} \right]$ is : $44$ $48$ $52$ $64$
asked Apr 3, 2020 in Quantitative Aptitude Lakshman Patel RJIT 9.4k points 41 652 824 149 views
1 vote
1 answer
5
193 views
If $a^{x}=b$, $b^{y}=c$ and $c^{z}=a$, then the value of $xyz$ is : $0$ $1$ $\frac{1}{3}$ $\frac{1}{2}$
asked Apr 3, 2020 in Quantitative Aptitude Lakshman Patel RJIT 9.4k points 41 652 824 193 views
...