CAT 2000 | Question: 78
Answer the following question based on the information given below. For three distinct real numbers $x, y$ and $z,$ let $f(x, y, z) = \min(\max(x, y), \max(y, z), \max(z, x))$ $g(x, y, z) = \max(\min(x, y), \min(y, z), \min(z, x))$ ... $(j(x, y, z) - g(x, y, z))/h(x, y, z)$ $(f(x, y, z) - h(x, y, z))/f(x, y, z)$
Answer the following question based on the information given below. For three distinct real numbers $x, y$ and $z,$ let $f(x, y, z) = \min(\max(x, y), \max(y, z), \max(z, x))$ $g(x, y, z) = \max(\min(x, y), \min(y, z), \min(z, x))$ $h(x, y, z) = \max(\max(x, y), \max(y, z), \max(z, x))$ ... $(j(x, y, z) - g(x, y, z))/h(x, y, z)$ $(f(x, y, z) - h(x, y, z))/f(x, y, z)$
asked
May 1, 2016
in Quantitative Aptitude
go_editor
13.3k points
●306 ●2250 ●2467
671 views