Need to show that other options are false also. Or else, prove f=g and m = h.

1,071 views

0 votes

**Answer the following question based on the information given below.**

For three distinct real numbers $x, y$ and $z,$ let

- $f(x, y, z) = \min(\max(x, y), \max(y, z), \max(z, x))$
- $g(x, y, z) = \max(\min(x, y), \min(y, z), \min(z, x))$
- $h(x, y, z) = \max(\max(x, y), \max(y, z), \max(z, x))$
- $j(x, y, z) = \min(\min(x, y), \min(y, z), \min(z, x))$
- $m(x, y, z) = \max(x, y, z)$
- $n(x, y, z) = \min(x, y, z)$

Which of the following expressions is necessarily equal to $1?$

- $(f(x, y, z) – m(x, y, z))/(g(x, y, z) – h(x, y, z))$
- $(m(x, y, z) – f(x, y, z))/(g(x, y, z) – n(x, y, z))$
- $(j(x, y, z) – g(x, y, z))/h(x, y, z)$
- $(f(x, y, z) – h(x, y, z))/f(x, y, z)$