CAT 2021 Set-3 | Quantitative Aptitude | Question: 6

1 vote
59 views

Let $\text{ABCD}$ be a parallelogram. The lengths of the side $\text{AD}$ and the diagonal $\text{AC}$ are $10 \; \text{cm}$ and $20 \; \text{cm},$ respectively. If the angle $\angle \text{ADC}$ is equal to $30^{\circ}$ then the area of the parallelogram, in sq. cm, is

1. $\frac{25(\sqrt{5} + \sqrt{15})}{2}$
2. $25 (\sqrt{5} + \sqrt{15})$
3. $\frac{25 (\sqrt{3} + \sqrt{15})}{2}$
4. $25 (\sqrt{3} + \sqrt{15})$

retagged

1 vote

Let’s draw the parallelogram.

Let $\text{AE}$ be the height of the parallelogram.

In $\triangle \text{AED},$

$\Rightarrow \text{sin} \; 30^{\circ} = \frac{\text{AE}}{\text{AD}}$

$\Rightarrow \frac{1}{2} = \frac{\text{AE}}{10}$

$\Rightarrow \boxed{\text{AE} = 5 \;\text{cm}}$

In $\triangle \text{AED},$ apply the Pythagorean theorem.

$\text{(Hypotenuse)}^{2} = \text{(Perpendicular)}^{2} + \text{(Base)}^{2}$

$\Rightarrow 10^{2} = 5^{2} + \text{(DE)}^{2}$

$\Rightarrow \text{DE} = \sqrt{100-25} = \sqrt{75}$

$\Rightarrow \boxed{\text{DE} = 5 \sqrt{3} \; \text{cm}}$

In $\triangle \text{AEC},$ apply the Pythagorean theorem.

$\Rightarrow 20^{2} = 5^{2} + \text{(EC)}^{2}$

$\Rightarrow \text{(EC)}^{2} = 400-25 = 375$

$\Rightarrow \text{EC} = \sqrt{375}$

$\Rightarrow \boxed{\text{EC} = 5\sqrt{15} \; \text{cm}}$

So, the length of $\text{DC} = \text{DE} + \text{EC}$

$\Rightarrow \boxed{\text{DC} = (5\sqrt{3} + 5\sqrt{15}) \; \text{cm}}$

The area of parallelogram $\text{ABCD} = \text{Base} \times \text{Height} = \text{DC} \times \text{AE}$

$\qquad \qquad \qquad = (5\sqrt{3} + 5\sqrt{15}) \times 5 = 25(\sqrt{3} + \sqrt15) \; \text{cm}^{2}$

$\therefore$ The area of parallelogram $\text{ABCD}$ is $25(\sqrt{3} + \sqrt15) \; \text{cm}^{2}.$

Correct Answer $:\text{D}$

10.1k points 4 8 30
edited

Related questions

1 vote
1
77 views
In a triangle $\text{ABC}, \angle \text{BCA} = 50^{\circ}. \text{D}$ and $\text{E}$ are points on $\text{AB}$ and $\text{AC},$ respectively, such that $\text{AD = DE}.$ If $\text{F}$ is a point on $\text{BC}$ such that $\text{BD = DF},$ then $\angle \text{FDE, in degrees},$ is equal to $96$ $72$ $80$ $100$
1 vote
2
66 views
The cost of fencing a rectangular plot is $₹ \; 200 \; \text{per ft}$ along one side, and $₹ \; 100 \; \text{per ft}$ along the three other sides. If the area of the rectangular plot is $60000 \; \text{sq. ft},$ then the lowest possible cost of fencing all four sides, in $\text{INR},$ is $160000$ $100000$ $120000$ $90000$
1 vote
A park is shaped like a rhombus and has area $96 \; \text{sq m}.$ If $40 \; \text{m}$ of fencing is needed to enclose the park, the cost, in $\text{INR},$ of laying electric wires along its two diagonals, at the rate of $₹ \; 125 \; \text{per m},$ is
Consider a sequence of real numbers $x_{1}, x_{2}, x_{3}, \dots$ such that $x_{n+1} = x_{n} + n – 1$ for all $n \geq 1.$ If $x_{1} = -1$ then $x_{100}$ is equal to $4950$ $4850$ $4849$ $4949$
Anil can paint a house in $12 \; \text{days}$ while Barun can paint it in $16 \; \text{days}.$ Anil, Barun, and Chandu undertake to paint the house for $₹ \; 24000$ and the three of them together complete the painting in $6 \; \text{days}.$ If Chandu is paid in proportion to the work done by him, then the amount in $\text{INR}$ received by him is