NIELIT 2019 Feb Scientist D - Section D: 19

730 views

If $x= \frac{\sqrt{p^{2}+q^{2}}+\sqrt{p^{2}-q^{2}}}{{\sqrt{p^{2}+q^{2}}-\sqrt{p^{2}-q^{2}}}}$ then $q^{2}x^{2}-2p^{2}x+q^{2}$ equals to :

1. $3$
2. $-1$
3. $-2$
4. $0$

\begin{align} &\frac{x}{1}= \frac{\sqrt{p^{2}+q^{2}}+\sqrt{p^{2}-q^{2}}}{{\sqrt{p^{2}+q^{2}}-\sqrt{p^{2}-q^{2}}}} \\ \implies &\frac{x+1}{x-1} = \frac{\sqrt{p^2 + q^2} }{\sqrt{p^2-q^2}} \qquad \qquad \rightarrow \text{ apply Componendo and Dividendo} \\ \implies & \frac{(x+1)^2}{(x-1)^2} = \frac{p^2+q^2}{p^2-q^2} \qquad \qquad \rightarrow \text{take square on both side} \\ \implies & \frac{(x+1)^2 + (x-1)^2}{(x+1)^2 - (x-1)^2} = \frac{p^2}{q^2} \qquad \rightarrow \text{ apply Componendo and Dividendo} \\ \implies & \frac{x^2 + 1}{2x} = \frac{p^2}{q^2} \\ \implies& q^2(x^2+1) = 2xp^2 \\ \implies & q^2x^2 -2p^2x +q^2 = 0 \end{align}

Option D.

sum of roots of the equation $\dfrac{3x^{3}-x^{2}+x-1}{3x^{3}-x^{2}-x+1}=\dfrac{4x^{3}-7x^{2}+x+1}{4x^{3}+7x^{2}-x-1}$ is :\$0$$1$$-1$$2 0 votes 0 answers 2 499 views If {m_1} and {m_2} are the roots of equation x^{2}+(\sqrt{3}+2)x+\sqrt{3}-1=0 then area of the triangle formed by the lines y={m_1}x, \: \: y={m_2}x, \: \: y=c i... 0 votes 1 answer 3 814 views A man invests some money partly in 3\% stock at 96 and partly in 4\% stock at 120. To get equal dividends from both, he must invest the money in the ratio :16 : ... 0 votes 4 answers 4 1,046 views In a swimming-pool 90 m by 40 m, 150 men take a dip. If the average displacement of water by a man is 8 cubic metres, what will be rise in water level ?30 cm33... 0 votes 2 answers 5 918 views A conical tent is to accommodate 10 persons. Each person must have 6\;m^{2} space to sit and 30\;m^{3} of air to breath. What will be height of cone ?37.5\;m$$150\...