in Quantitative Aptitude edited by
157 views
3 votes

A tank is emptied everyday at a fixed time point. Immediately thereafter, either pump $A$ or pump $B$ or both start working until the tank is full. On Monday, $A$ alone completed filling the tank at $8$ pm. On Tuesday, $B$ alone completed filling the tank at $6$ pm. On Wednesday, $A$ alone worked till $5$ pm, and then B worked alone from $5$ pm to $7$ pm, to fill the tank. At what time was the tank filled on Thursday if both pumps were used simultaneously all along?

  1. $4:36$ pm
  2. $4:12$ pm
  3. $4:24$ pm
  4. $4:48$ pm
in Quantitative Aptitude edited by
by
12.8k points 250 1881 2459
157 views

1 Answer

1 vote

For easy understanding we can assume $24 \; \text{hours}$ clock.

Let $`t\text{’}$ be the time when the tank is emptied.

On Monday $\text{A}$ alone completed filling the tank at $8 \; \text{pm} \; (20 \; \text{in 24 hours clock}).$

So, time taken by $\text{A}$ to fill the tank $ = (20 – t) \; \text{hours}.$

On Tuesday $\text{B}$ alone completed filling the tank at $ 6 \; \text{pm} ( 18 \text{ in 24 hours clock}).$

So, time taken by $\text{B}$ to fill the tank $ = (18 – t) \; \text{hours}.$

On Wednesday $\text{A}$ alone worked till $ 5 \; \text{pm} \; (17 \; \text{in 24 hours clock}),$ and then $\text{B}$ worked alone from $5 \; \text{pm}$ to $ 7 \; \text{pm} \; ( 2 \; \text{hours}) $

So, time taken by $\text{A} = (17 – t) \; \text{hours},$  and time taken by $ \text{B} = 2 \; \text{hours}$ to fill the tank.

Let $\text{A}$ and $\text{B}$ be the rate of works (efficiency)  of $\text{A}$ and $\text{B}$ respectively.We can that, the capacity of the tank will be the same each day.

So, $(20-t) \text{A} = (18-t) \text{B} = (17-t) \text{A+2B}\quad \longrightarrow (1) $

Taking first two terms,

$(20-t) \text{A} = (18-t) \text{B} $

$ \Rightarrow 20 \text{A – At} = 18 \text{B – Bt} $

$ \Rightarrow \text{At – Bt} = 20\text{A} – 18\text{B} \quad \longrightarrow (2) $

Taking last two terms.

$(18 – t) \text{B} = (17-t) \text{A+2B} $

$ \Rightarrow \text{18B – B}t = 17 \text{A- A}t + 2 \text{B} $

$ \Rightarrow \text{A}t – \text{B}t = 17 \text{A} – 16 \text{B} $

$ \Rightarrow \text{20A – 18B = 17A – 16B} \quad [ \because \text{From equation (2)}] $

$ \Rightarrow \text{3A = 2B} $

$ \Rightarrow \frac{\text{A}}{\text{B}} = \frac{2}{3} = k \; \text{(let)}$

$ \Rightarrow \boxed {\text{A} = 2k, \; \text{B} = 3k} $

Now, from equation $(1),$ we get

$ (20-t) \text{A} = (18-t) \text{B} $

$ \Rightarrow (20 -t) 2k = (18 -t) 3k $

$ \Rightarrow 40 – 2t = 54 – 3t $

$ \Rightarrow \boxed{t=14 = 2\; \text{pm}} $

Total work $ = 2k \times (20 – t) = 3k (18 – t) $

$ = 2k \times (20 – 14) = 3k \times (18 – 14) $

$ = 12k = 12k \; \text{units} $

On Thursday, when both pumps were used simultaneously, time taken $ = \frac{12k}{5k} = \frac{12}{5} = 2.4 \; \text{hours} $

We know that,

  • $ 1 \; \text{hour} \longrightarrow 60 \; \text{minutes} $
  • $ 0.4 \; \text{hour} \longrightarrow 60 \times \frac{0.4}{10} = 24 \; \text{minutes} $

So, time taken by $\text{A and B} = 2 \; \text{hours 24  minutes}. $

$\therefore$ The total time taken by both the pumps to fill the tank $ = 14 + 2 \;\text{hours 24 minutes}$

$\quad = 2 \; \text{pm + 2 hours 24 minutes} $

$\quad = \boxed{4 : 24 \; \text{pm}} $

Correct Answer $: \text{C}$

edited by
by
4k points 3 6 24
Answer:

Related questions

2 votes
1 answer
3
jothee asked in Quantitative Aptitude Mar 20, 2020
179 views
jothee asked in Quantitative Aptitude Mar 20, 2020
by jothee
12.8k points 250 1881 2459
179 views
Ask
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true