# CAT 2018 Set-1 | Question: 88

476 views

Let $\text{ABCD}$ be a rectangle inscribed in a circle of radius $13$ cm. Which one of the following pairs can represent, in cm, the possible length and breadth of $\text{ABCD}?$

1. $24,10$
2. $25,9$
3. $24,12$
4. $25,10$

Given that, $\text{ABCD}$ be a rectangle inscribed in a circle of radius $13\;\text{cm.}$

Let the length and breadth of the rectangle be $l$ and $b$ respectively.

We can draw the diagram,

The rectangle $\text {ABCD}$ is inside the circle.

So, the diameter of the circle is equal to the diagonal of the rectangle.

In $\triangle \text{BCD},$ apply the Pythagoras’ theorem,

$\text{(BD)}^{2} = \text{(BC)}^{2} + \text{(CD)}^{2}$

$\Rightarrow (26)^{2} = b^{2} + l^{2}$

$\Rightarrow b^{2} + l^{2} = 676 \quad \longrightarrow (1)$

Now, check all the options,

1. $l=24, b=10$

From equation $(1),$ we get

$b^{2} + l^{2} = 676$

$\Rightarrow (10)^{2} + (24)^{2} = 676$

$\Rightarrow 100 + 576 = 676$

$\Rightarrow \boxed{676 = 676}$ (Satisfied)

1. $l=25, b=9$

From equation $(1),$ we get

$b^{2} + l^{2} = 676$

$\Rightarrow (9)^{2} + (25)^{2} = 676$

$\Rightarrow 81 + 625 = 676$

$\Rightarrow \boxed {706 \neq 676}$ ( Not satisfied)

1. $l=24, b=12$

From equation $(1),$ we get

$b^{2} + l^{2} = 676$

$\Rightarrow (12)^{2} + (24)^{2} = 676$

$\Rightarrow 144 + 576 = 676$

$\Rightarrow \boxed {720 \neq 676}$ ( Not satisfied)

1. $l=25, b=10$

From equation $(1),$ we get

$b^{2} + l^{2} = 676$

$\Rightarrow (10)^{2} + (25)^{2} = 676$

$\Rightarrow 100+ 625 = 676$

$\Rightarrow \boxed{725 \neq 676}$ ( Not satisfied)

$\therefore$ The length of the rectangle $l = 24\; \text{cm},$ and the breadth of the rectangle $b = 10\; \text{cm}.$

Correct Answer $: \text {A}$

## Related questions

1
412 views
In a circle, two parallel chords on the same side of a diameter have lengths $4$ cm and $6$ cm. If the distance between these chords is $1$ cm, then the radius of the cir...
Given an equilateral triangle $\text{T1}$ with side $24$ cm, a second triangle $\text{T2}$ is formed by joining the midpoints of the sides of $\text{T1}$. Then a third tr...
Points $\text{E, F, G, H}$ lie on the sides $\text{AB, BC, CD}$, and $\text{DA}$, respectively, of a square $\text{ABCD}$. If $\text{EFGH}$ is also a square whose area is...
In a parallelogram $\text{ABCD}$ of area $72$ sq cm, the sides $\text{CD}$ and $\text{AD}$ have lengths $9$ cm and $16$ cm, respectively. Let $\text{P}$ be a point on $\t... 2 votes 1 answer 5 662 views In a circle with center$\text{O}$and radius$1$cm, an arc$\text{AB}$makes an angle$60$degrees at$\text{O}$. Let$\text{R}$be the region bounded by the radii$\te...