If $pqr=1$ then $\frac{1}{1+p+r^{-1}} + \frac{1}{1+q+r^{-1}} + \frac{1}{1+r+p^{-1}} $ is equivalent to$p+q+r$$\frac{1}{p+q+r}$$1$$p^{-1}+q^{-1}+r^{-1}$

Let $x$ and $y$ be positive integers such that $x$ is prime and $y$ is composite. Then,$y – x$ cannot be an even integer$xy$ cannot be an even integer.$\frac{x+y}{x}$ c...

What are the values of $x$ and $y$ that satisfy both the equations?$2^{0.7x} \cdot 3^{-1.25y} = 8\sqrt{6} / 27$$4^{0.3x} \cdot 9^{0.2y} = 8.(81)^{\frac{1}{5}}$$x=2, y=5$$...