retagged by
542 views

1 Answer

1 votes
1 votes

Given that, the product of $3 \text{-digit}$ numbers is more than $2$ but less than $7.$

Let the $3\text{-digit}$ number be $xyz.$ Then, $ 2< x \times y \times z < 7 $

$ \Rightarrow x \times y \times z = 3\; \text{(or)}\; 4\;\text{ (or)}\; 5 \;\text{(or)}\; 6 $

$\textbf{Case 1:}$ When  $x \times y \times z = 3$

  • $\underline{x} \quad \underline{y} \quad \underline{z}$
  • $1 \quad 1 \quad 3$
  • $1 \quad 3 \quad 1$
  • $3 \quad 1 \quad 1$

Three possibilities.

$\textbf{Case 2:}$ When  $x \times y \times z = 4$

  • $\underline{x} \quad \underline{y} \quad \underline{z}$
  • $1 \quad 1 \quad 4$
  • $1 \quad 4 \quad 1$
  • $4 \quad 1 \quad 1$
  • $1 \quad 2 \quad 2$
  • $2 \quad 1 \quad 2$
  • $2 \quad 2 \quad 1$

Six possibilities.

$\textbf{Case 3:}$ When  $x \times y \times z = 5$

  • $\underline{x} \quad \underline{y} \quad \underline{z}$
  • $1 \quad 1 \quad 5$
  • $1 \quad 5 \quad 1$
  • $5 \quad 1 \quad 1$

Three possibilities.

$\textbf{Case 4:}$ When  $x \times y \times z = 6$

  • $\underline{x} \quad \underline{y} \quad \underline{z}$
  • $1 \quad 2 \quad 3$
  • $1 \quad 3 \quad 2$
  • $2 \quad 3 \quad 1$
  • $2 \quad 1 \quad 3$
  • $3 \quad 1 \quad 2$
  • $3 \quad 2 \quad 1$
  • $1 \quad 1 \quad 6$
  • $1 \quad 6 \quad 1$
  • $6 \quad 1 \quad 1$

Nine possibilities.

Total numbers $ = 3 + 6 + 3 + 9 = 21.$

$\therefore$ There are $21$ numbers, whose product of their digits is more than $2$ but less than $7.$

Correct Answer$: 21$

edited by
Answer:

Related questions

1 votes
1 votes
1 answer
1
2 votes
2 votes
1 answer
2
soujanyareddy13 asked Sep 16, 2021
462 views
If $\log_4 5=\left ( \log _{4}y \right )\left ( \log _{6}\sqrt{5} \right )$, then $y$ equals
1 votes
1 votes
1 answer
3
soujanyareddy13 asked Sep 16, 2021
771 views
A person spent Rs $50000$ to produce a desktop computer and a laptop computer. He sold the desktop at $20\%$ profit and the laptop at $10\%$ loss. If overall he made a $2...
1 votes
1 votes
1 answer
4
soujanyareddy13 asked Sep 16, 2021
528 views
The area of the region satisfying the inequilities $\left | x \right |-y\leq 1,y\geq 0$ and $y\leq 1$ is
1 votes
1 votes
1 answer
5