search
Log In
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
1 vote
89 views

If $a^{2}+b^{2}+c^{2}=1$, then which of the following can't be the value of $ab+bc+ca$ ?

  1. $0$
  2. $\frac{1}{2}$
  3. $\frac{-1}{4}$
  4. $-1$
in Quantitative Aptitude 9.3k points 31 523 813
recategorized by
89 views

1 Answer

0 votes

Given, $a^{2}+b^{2}+c^{2}=1$

We know that, $(a+b+c)^2=a^{2}+b^{2}+c^{2}+2(ab+bc+ca)$

Since square of a number is always positive, then $(a+b+c)^2\geq 0$

$\Rightarrow a^{2}+b^{2}+c^{2}+2(ab+bc+ca) \geq 0$

Now lets examine each option

  1. $ab+bc+ca =0$

$1+2(0) = 1 \geq 0$ (Possible value)

$\therefore ab+bc+ca =0$ can be a possible value.

  1. $ab+bc+ca =\cfrac{1}{2}$

$1+2\left(\cfrac{1}{2}\right) = 2 \geq 0$

$\therefore ab+bc+ca =\cfrac{1}{2}$ can be a possible value.

  1. $ab+bc+ca =\cfrac{-1}{4}$

$1+2\left(\cfrac{-1}{4}\right) = 1-\cfrac{1}{2} = \cfrac{1}{2}  \geq 0$

$\therefore ab+bc+ca =\cfrac{-1}{4}$ can be a possible value.

  1. $ab+bc+ca = -1$

$1+2(-1) = -1 \ngeqslant 0$

$\therefore ab+bc+ca = -1$ can’t be a possible value.

Hence, option D is the correct.


If $a^{2}+b^{2}+c^{2}$ then $ab+bc+ca$ lies in the interval $\left[\cfrac{-1}{2},1\right]$

For proof see this: https://gateoverflow.in/39510/gate2015-ec-2-ga-9

If you know above result then you can directly say answer is option D.

114 points 2 30 41
edited by

Related questions

0 votes
2 answers
1
94 views
If $P$\left (x, y \right)$ is any point on the line joining the points $A$\left (a, 0 \right)$ and $B$\left(0, b \right)$ then the value of $bx+ay-ab$ is : $1$ $-1$ $0$ $2$
asked Apr 3, 2020 in Quantitative Aptitude Lakshman Patel RJIT 9.3k points 31 523 813 94 views
2 votes
1 answer
2
91 views
Find the value of $x$ satisfying : $\log_{10} \left (2^{x}+x-41 \right)=x \left (1-\log_{10}5 \right)$ $40$ $41$ $-41$ $0$
asked Apr 3, 2020 in Quantitative Aptitude Lakshman Patel RJIT 9.3k points 31 523 813 91 views
0 votes
0 answers
3
54 views
If $8v-3u=5uv \: \: \& \: \: 6v-5u=-2uv$ then $31u+46v$ is: $44$ $42$ $33$ $55$
asked Apr 1, 2020 in Quantitative Aptitude Lakshman Patel RJIT 9.3k points 31 523 813 54 views
1 vote
1 answer
4
96 views
If $x=\dfrac{\sqrt{10}+\sqrt{2}}{2}, \: \: y=\dfrac{\sqrt{10}-\sqrt{2}}{2}$ then the value of $\log _{2}(x^{2}+xy+y^{2})$ is: $0$ $1$ $2$ $3$
asked Apr 1, 2020 in Quantitative Aptitude Lakshman Patel RJIT 9.3k points 31 523 813 96 views
0 votes
0 answers
5
75 views
If $x+y+z=2, \:\: xy+yz+zx=-1$ then the value of $x^{3}+y^{3}+z^{3}$ is: $20$ $16$ $8$ $0$
asked Apr 1, 2020 in Quantitative Aptitude Lakshman Patel RJIT 9.3k points 31 523 813 75 views
...