$\textrm{Given that:}$ $x=\frac{\sqrt10+\sqrt2}{2},y=\frac{\sqrt10-\sqrt2}{2}$
$\textrm{first find $x^2+xy+y^2$}$
$\implies$ $x^2+xy+y^2+xy-xy$
$\implies$ $x^2+2xy+y^2-xy$
$\implies$ $(x+y)^2-xy….(1)$
$\textrm{Let find x+y first:}$
$\implies$ $\frac{\sqrt10+\sqrt2}{2}+\frac{\sqrt10-\sqrt2}{2}$
$\implies$ $\frac{2*\sqrt10}{2}$
$\implies$ $x+y=$ $\sqrt10...(2)$
$\textrm{Let find x*y:}$
$\implies$ $\frac{\sqrt10+\sqrt2}{2}*\frac{\sqrt10-\sqrt2}{2}$
$\implies$ $\frac{(10-2)}{4}$
$\implies$ $x*y=$$2...(3)$
$\textrm{Substitute eq (2) &(3) into (1), we get:}$
$\implies$ $(\sqrt{10})^2-2$
$\implies$ $8$
$\textrm{Now find l$og_2(8)$,which is equal to 3}$
$\textrm{Option D is correct.}$