in Quantitative Aptitude edited by
128 views
2 votes
If $N$ and $x$ are positive integers such that $N^{N}=2^{160}$ and $N^{2} + 2^{N}$ is an integral multiple of $2^{x}$, then the largest possible $x$ is
in Quantitative Aptitude edited by
by
12.8k points 250 1881 2459
128 views

1 Answer

1 vote
Given that, ${N}^{N} = 2^{160} $

$ \Rightarrow N^{N} = \left( 2^{10} \right)^{16} $

$ \Rightarrow N^{N} = \left( 2^{5} \right)^{32} $

$ \Rightarrow N^{N} = (32)^{32} $

$\therefore \; \boxed{N = 32} $

Now, $ N^{2} + 2^{N} = 32^{2} + 2^{32} $

$ = \left( 2^{5} \right)^{2} + 2^{32} $

$ = 2^{10} + 2^{32} $

$ = 2^{10} (1+2^{22}) $

Here, $N^{2} + 2^{N}$ is a integral multiple of $2^{x}.$

So, $ 2^{x} = 2^{10} $

$ \Rightarrow \boxed{ x = 10} $

$\therefore$ The largest possible value of $x$ is $10.$

Correct Answer $:10$
edited by
by
4k points 3 6 24
Answer:

Related questions

2 votes
1 answer
1
jothee asked in Quantitative Aptitude Mar 20, 2020
179 views
jothee asked in Quantitative Aptitude Mar 20, 2020
by jothee
12.8k points 250 1881 2459
179 views
Ask
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true