in Quantitative Aptitude retagged by
297 views
2 votes
2 votes

The smallest integer $n$  for which $4^{n}>17^{19}$ holds, is closest to

  1. $33$
  2. $37$
  3. $39$
  4. $35$
in Quantitative Aptitude retagged by
13.4k points
297 views

1 Answer

1 vote
1 vote

Given that,

$ 4^{n}  > 17^{19} $

Taking the $ \log_{10}$ both sides.

$ \log_{10}4^{n} > \log_{10} 17^{19} $

$ \Rightarrow n \log_{10}4 > 19 \log_{10}17 \quad [ \because \log_{b}a^{x} = x \log_{b}a] $

$ \Rightarrow n > 19 \left( \frac{\log_{10}17}{ \log_{10}4} \right) $

$ \Rightarrow n > 19 ( \log_{4}17) \quad \left[ \because \log_{b}a = \frac{ \log_{x}a}{ \log_{x}b} \right] $

For easy calculation, let us assume $17 \approx 16.$

Now, $ n > 19 ( \log_{4} 16)$

$ \Rightarrow n > 19 ( \log_{4} 4^{2})$

$ \Rightarrow n > 19 \times 2 ( \log_{4}4)$

$ \Rightarrow \boxed{n >38} \quad [ \because \log_{a}a = 1 ] $

$ \Rightarrow \boxed{n \simeq 39} $

$\therefore$ The small integer $n$ is closed to $39.$


$\textbf{Short Method :}$

Given that, $ 4^{n} > 17^{19} $

$ \Rightarrow \left( 4^{2} \right)^{\frac{n}{2}} > 17^{19} $

$ \Rightarrow (16)^{\frac{n}{2}} > 17^{19} $

Here, $ 16 < 17 ,$ so $ \frac{n}{2}$ must be greater than $19.$

Thus, $ \frac{n}{2} > 19 $

$ \Rightarrow n > 38 $

$ \Rightarrow \boxed{n \simeq 39} $

Correct Answer $:\text{C}$

edited by
10.3k points
Answer:

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true