in Quantitative Aptitude edited by
195 views
3 votes

The area of a rectangle and the square of its perimeter are in the ratio $1:25$. Then the lengths of the shorter and longer sides of the rectangle are in the ratio

  1. $1:4$
  2. $2:9$
  3. $1:3$
  4. $3:8$
in Quantitative Aptitude edited by
by
12.8k points 250 1881 2459
195 views

1 Answer

1 vote
The area of Rectangle $ = L \ast B$

Perimeter of Rectangle $ = 2 \ast (L+B),$ where $L=$ length $,B=$ width

Given that,  the area of a rectangle and the square of its perimeter is in the ratio of $1: 25.$

$\frac{L\ast B}{[2\ast (L+B)]^{2}} = \frac{1}{25}$

$\Rightarrow  25\ast L\ast B = [2\ast (L+B)]^{2}$

$\Rightarrow 25LB = 4\ast (L^2+B^2+2LB)$

$\Rightarrow 25LB = 4L^2+4B^2+8LB$

$\Rightarrow 4L^2-17LB+4B^2=0$

$\Rightarrow 4L^2-16LB-1LB+4B^2=0$

$\Rightarrow 4L(L-4B)-B(L-4B)=0$

$\Rightarrow (L-4B)(4L-B)=0$

$\Rightarrow L-4B = 0\;\text{(or)}\;4 L – B = 0$

$\Rightarrow L = 4B \;\text{(or)}\; 4L  = B$

$\Rightarrow \frac{L}{B} = \frac{4}{1} \;\text{(or)}\; \frac{L}{B} = \frac{1}{4}$

As we know the shorter length in the rectangle is the width & the longer side is the length.

So, the required ratio  is $B:L = 1:4.$

$\text{Option A}$
edited by
by
3.8k points 5 10 66
Answer:

Related questions

2 votes
1 answer
3
jothee asked in Quantitative Aptitude Mar 20, 2020
179 views
jothee asked in Quantitative Aptitude Mar 20, 2020
by jothee
12.8k points 250 1881 2459
179 views
Ask
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true