54 views
0 votes
0 votes
CAT 2023 Set-3 | Quantitative Aptitude | Question-4

Q. 4)

For a real number $x$, if $\frac{1}{2}, \frac{\log _{3}\left(2^{x}-9\right)}{\log _{3} 4}$, and $\frac{\log _{5}\left(2^{x}+\frac{17}{2}\right)}{\log _{5} 4}$ are in an arithmetic progression, then the common difference is

  1. $\log _{4}\left(\frac{23}{2}\right)$
  2. $\log _{4}\left(\frac{3}{2}\right)$
  3. $\log _{4} 7$
  4. $\log _{4}\left(\frac{7}{2}\right)$

Please log in or register to answer this question.

Related questions

0 votes
0 votes
0 answers
1
admin asked Mar 31
18 views
Q. 4)For a real number $x$, if $\frac{1}{2}, \frac{\log _{3}\left(2^{x}-9\right)}{\log _{3} 4}$, and $\frac{\log _{5}\left(2^{x}+\frac{17}{2}\right)}{\log _{5} 4}$ are in...
0 votes
0 votes
0 answers
2
admin asked Mar 31
65 views
Section: Quantitative AptitudeQ. 1)If $x$ is a positive real number such that $x^{8}+\left(\frac{1}{x}\right)^{8}=47$, then the value of $x^{9}+\left(\frac{1}{x}\right)^{...
0 votes
0 votes
0 answers
3
admin asked Mar 31
55 views
Q. 2)Let $n$ and $m$ be two positive integers such that there are exactly 41 integers greater than $8^{m}$ and less than $8^{n}$, which can be expressed as powers of 2 . ...
0 votes
0 votes
0 answers
4
admin asked Mar 31
55 views
Q. 3)For some real numbers $a$ and $b$, the system of equations $x+y=4$ and $(a+5) x+\left(b^{2}-15\right) y=8 b$ has infinitely many solutions for $x$ and $y$. Then, the...
0 votes
0 votes
0 answers
5
admin asked Mar 31
53 views
Q. 5)A quadratic equation $x^{2}+b x+c=0$ has two real roots. If the difference between the reciprocals of the roots is $\frac{1}{3}$, and the sum of the reciprocals of t...