in Quantitative Aptitude edited by
298 views
0 votes
0 votes

If $\frac{a}{a+b} = \frac{7}{17},$ then $\frac{2a-b}{a+b}$ is equal to :

  1. $\frac{4}{17}$
  2. $\frac{-3}{17}$
  3. $\frac{10}{17}$
  4. $\frac{8}{17}$
in Quantitative Aptitude edited by
13.6k points
298 views

1 Answer

0 votes
0 votes
Given that:$\frac{a}{a+b}=\frac{7}{17}$

$\implies 17a=7a+7b$

$\implies 10a=7b$

$\implies a=\frac{7b}{10}…...(i)$

so the value of $\frac{2a-b}{a+b}=\frac{2\times \frac{7b}{10}-b}{\frac{7b}{10}+b}$

$\implies\frac{2b}{5}\times\frac{10}{17b}=\frac{4}{17}$

Option (A) is correct.
6.9k points

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true