in Quantitative Aptitude retagged by
594 views
1 vote
1 vote

Anu, Vinu and Manu can complete a work alone in $15 \; \text{days}, 12 \; \text{days}$ and $20 \; \text{days},$ respectively. Vinu works everyday. Anu works only on alternate days starting from the first day while Manu works only on alternate days starting from the second day. Then, the number of days needed to complete the work is

  1. $6$
  2. $5$
  3. $8$
  4. $7$
in Quantitative Aptitude retagged by
2.7k points
594 views

1 Answer

1 vote
1 vote

We can draw a table for better understanding.

$$\begin{array} {llll} & \text{Anu} & \text{Vinu} & \text{Manu} \\\hline \text{Time :} & 15\;\text{days} & 12 \;\text{days} & 20 \;\text{days} \\ \text{Total work :} & \text{LCM(15,12,20)} & = & 60\;\text{units} \\ \text{Efficiency :}  & 4\;\text{units/day} & 5\;\text{units/day}  & 3 \;\text{units/day} \end{array}$$

Now, 

  • First day: Vinu  + Anu $= 5+4 =9\;\text{units}$
  • Second day: Vinu  + Manu $= 5+3 =8\;\text{units}$
  • Third day: Vinu  + Anu $= 5+4 =9\;\text{units}$ 
  • Fourth day: Vinu  + Manu $= 5+3 =8\;\text{units}$
  • Fifth day: Vinu  + Anu $= 5+4 =9\;\text{units}$
  • Sixth day: Vinu  + Manu $= 5+3 =8\;\text{units}$
  • Seven day: Vinu  + Anu $= 5+4 =9\;\text{units}$ 

Total work $= 60\; \text{units}$

$\text{(Or)}$

In odd days, Vinu + Anu $=5+4 = 9\;\frac{\text{units}}{\text{day}}$

In even days, Vinu + Manu $=5+3 = 8\;\frac{\text{units}}{\text{day}}$

  • $2$ days $\longrightarrow 17\;\text{units}$
  • $6$ days $\longrightarrow 51\;\text{units}$

In the Seventh day (Vinu + Anu) $= 5+4 = 9\;\frac{\text{units}}{\text{day}}$

  • $7$ days $\longrightarrow 60\;\text{units}$ 

$\therefore$ The number of days needed to complete the work is $7$ days.

Correct Answer $:\text{D}$

edited by
10.3k points
Answer:

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true