in Quantitative Aptitude retagged by
140 views
1 vote
1 vote

If the area of a regular hexagon is equal to the area of an equilateral triangle of side $12 \; \text{cm},$ then the length, in cm, of each side of the hexagon is 

  1. $6 \sqrt{6}$
  2. $2 \sqrt{6}$
  3. $4 \sqrt{6}$
  4. $\sqrt{6}$
in Quantitative Aptitude retagged by
2.7k points
140 views

1 Answer

1 vote
1 vote

Let the side of hexagon be $x \; \text{cm}.$

The area of regular hexagon $ = 6 \times \frac{\sqrt{3}}{4} x^{2}$

Now, $6 \times  \frac{\sqrt{3}}{4} x^{2} = \frac{\sqrt{3}}{4} (12)^{2}$

$ \Rightarrow 6x^{2} = 12 \times 12 $

$\Rightarrow x^{2} = 24 $

$ \Rightarrow x = \sqrt{24}$

$ \Rightarrow \boxed{ x = 2 \sqrt{6} \; \text{cm}}$

Correct Answer $: \text{B}$


$\textbf{PS:}$ The regular hexagon



The $\triangle \text{ABC}$ are equilateral triangle.

  • The area of an equilateral triangle $ = \frac{\sqrt{3}}{4} \times \text{(Side)}^{2}$
  • The area of regular hexagon $ = 6 \times \frac{\sqrt{3}}{4} \times \text{(Side)}^{2}$
edited by
10.3k points
Answer:

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true