in Quantitative Aptitude retagged by
126 views
1 vote
1 vote

$f(x) = \dfrac{x^{2} + 2x – 15}{x^{2} – 7x – 18}$ is negative if and only if

  1. $ – 2 < x < 3 \; \text{or} \; x > 9 $
  2. $ x < – 5 \; \text{or} \; 3 < x < 9 $
  3. $ – 5 < x < – 2 \; \text{or} \; 3 < x < 9 $
  4. $ x < – 5 \; \text{or} \; – 2 < x < 3 $
in Quantitative Aptitude retagged by
2.7k points
126 views

1 Answer

1 vote
1 vote

Given that, $f(x) = \dfrac{x^{2} + 2x – 15}{x^{2} – 7x – 18}$

Now, if $f(x) < 0$

Then, $\dfrac{x^{2} + 2x – 15}{x^{2} – 7x – 18} < 0$

$ \Rightarrow \dfrac{x^{2} + 5x – 3x – 15}{x^{2} – 9x + 2x – 18} < 0$

$ \Rightarrow \dfrac{(x+5)(x-3)}{(x-9)(x+2)} < 0$

We can draw the number line.



$x \in (-5, -2) \cup (3, 9)$

$ \boxed{-5 < x < -2 \; \text{(or)} \; 3 < x < 9}$

Correct Answer $:\text{C}$

edited by
10.3k points
Answer:

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true