in Quantitative Aptitude retagged by
197 views
1 vote
1 vote

If $x_{0} = 1, x_{1} = 2$ and $x_{n+2} = \dfrac{1 + x_{n+1}}{x_{n}}, n = 0, 1, 2, 3, \dots ,$ then $x_{2021}$ is equal to

  1. $1$
  2. $3$
  3. $4$
  4. $2$
in Quantitative Aptitude retagged by
2.7k points
197 views

1 Answer

1 vote
1 vote

Given that, $x_{0}=1, x_{1}=2, x_{n+2} = \frac{1+x_{n+1}}{x_{n}}; n=0,1,2,3,\dots$

Now, 

  • $x_{0}=1$
  • $x_{1}=2$
  • $x_{2}=\frac{1+2}{1} = 3$
  • $x_{3}=\frac{1+3}{2} = 2$
  • $x_{4}=\frac{1+2}{3} = 1$
  • $x_{5}=\frac{1+1}{2} = 1$
  • $x_{6}=\frac{1+1}{1} = 2$
  • $x_{7}=\frac{1+2}{1} = 3$
  • $x_{8}=\frac{1+3}{2} = 2$
  • $x_{9}=\frac{1+2}{3} = 1$
  • $\vdots \quad \vdots \quad \vdots \quad \vdots$

We can see the pattern,  $1,2,3,2,{\color{Red} {1}},1,2,3,2,{\color{Red} {1}},\dots$

Every $5^{\text{th}}$ multiple is $1.$

So, $x_{2020}=1.$

$\therefore$ The value of $x_{2021} = 2.$

Correct Answer $:\text{D}$

edited by
11.2k points
Answer:

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true