soujanyareddy13
asked
in Quantitative Aptitude
Sep 17, 2021
retagged
Mar 23, 2022
by Lakshman Patel RJIT

408 views
1 vote

Let the present ages of Dick, Tom and Harry be $D, T, $ and $ H \; \text{years} $ respectively.

According to the question,

- $ D = 3T \; \longrightarrow (1) $
- $ H = 2D \; \longrightarrow (2) $

And, $ D = \left( \frac{D+T+H}{3} \right) – 1 $

$ \Rightarrow D = \left( \frac{D+\frac{D}{3}+2D}{3} \right) – 1 \quad [ \because \text{From equation (1) and (2)}] $

$ \Rightarrow D = \left( \frac{3D+D+6D}{9} \right) – 1 $

$ \Rightarrow 9D = 10D – 9 $

$ \Rightarrow \boxed{D = 9 \; \text{years}} $

Now, Harry present age $H = 2 \times 9 $

$ \Rightarrow H = 18 \; \text{years}.$

Correct Answer $: 18 $

0 votes

Let us assume Tom age is $x$ then:

- Dick’s age= $3x$
- Harry’s age=$2.3x=6x$

Now according to the given question, Dick’s age is 1 year less than the average age of all three,

$\therefore 3x=\left (\frac{3x+6x+x}{3} \right )-1$

$\Rightarrow 3x=\left (\frac{10x}{3} \right )-1$

$\Rightarrow 1=\frac{10x}{3}-3x$

$\Rightarrow 1=\frac{10x-9x}{3}$

$\Rightarrow 1=\frac{x}{3}$

$\Rightarrow x=3$

So Tom age is $3$ year,

Harry’s age is $=6x=6*3=18$ year.

$\therefore$ Harry’s age is $18$ year.