in Quantitative Aptitude edited by
33 views
2 votes
2 votes
$\dfrac{2 \times 4 \times 8 \times 16} {(\log_{2} 4)^{2} (\log_{4} 8)^{3} (\log_{8} 16)^{4}}$ equals
in Quantitative Aptitude edited by
by
1.3k points 5 6 33
33 views

1 Answer

1 vote
1 vote
Given that, $ \dfrac{2 \times 4 \times 8 \times 16}{ \left( \log_{2}4 \right)^{2} \left( \log_{4}8 \right)^{3} \left( \log_{8}16 \right)^{4}} $

$ \Rightarrow \dfrac{2 \times 4 \times 8 \times 16}{ \left( \log_{2}2^{2} \right)^{2} \left( \log_{2^{2}}2^{3} \right)^{3} \left( \log_{2^{3}}2^{4} \right)^{4}} $

$ \Rightarrow \dfrac{2 \times 4 \times 8 \times 16}{ \left(2 \log_{2}2 \right)^{2} \left( \frac{3}{2} \log_{2}2 \right)^{3} \left( \frac{4}{3} \log_{2}2 \right)^{4}} \quad [\because \log_{a^{m}} x^{b} = \frac{b}{m} \log _{a} x] $

$ \Rightarrow \dfrac{2 \times 4 \times 8 \times 16}{2^{2} \times \left( \frac{3}{2} \right)^{3} \times \left( \frac{4}{3} \right)^{4}} \quad [\because \log_{a} a = 1]$

$ \Rightarrow \dfrac{2 \times 4 \times 8 \times 16}{4 \times \frac{3^{3}} {8} \times \frac{4 \times 4 \times 4 \times 4}{3 \times 3^{3}}} $

$ \Rightarrow 24 $

Correct Answer: $24$
edited by
by
4.9k points 3 7 28
Answer:

Related questions

Ask
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true