in Quantitative Aptitude edited by
30 views
2 votes
2 votes

For real $\textsf{x}$ , the maximum possible value of $ \frac{x}{\sqrt{1+x^{4}}}$ is 

  1. $ \frac{1}{\sqrt{3}}$
  2. $1$
  3. $\frac{1}{\sqrt{2}}$
  4. $\frac{1}{2}$
in Quantitative Aptitude edited by
by
1.3k points 5 6 33
30 views

1 Answer

1 vote
1 vote
Given that, $x$ is a real number.

Now, $\dfrac{x}{\sqrt{1+x^{4}}} = \dfrac{1}{\frac{\sqrt{1+x^{4}}}{x}} = \dfrac{1}{\sqrt{\frac{{1+x^{4}}}{x^{2}}}} = \dfrac{1}{\sqrt{\frac{1}{x^{2}} + x^{2}}} \quad \longrightarrow (1) $

We know that, $ \boxed{\text{AM} \geq \text{GM}}$

$ \Rightarrow \dfrac{x^{2} + \dfrac{1}{x^{2}}}{2} \geq \sqrt{x^{2} \cdot \dfrac{1}{x^{2}}} $

$ \Rightarrow \boxed {x^{2} + \frac{1}{x^{2}} \geq 2} $

From equation $(1),$ we get

$ \dfrac{x}{\sqrt{1+x^{4}}} = \dfrac{1}{\sqrt{\underbrace{x^{2}+\frac{1}{x^{2}}}_{2}}}$

$ = \dfrac{1}{\sqrt{2}} \quad [ \because \text{For the minimum value}] $

$\therefore$ The minimum possible value of $\dfrac{x}{\sqrt{1+x^{4}}}$ is $\dfrac{1}{\sqrt{2}}.$

Correct Answer$: \text{C}$
edited by
by
4.9k points 3 7 28
Answer:

Related questions

Ask
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true