in Quantitative Aptitude retagged by
129 views
1 vote
1 vote

Anil buys $12$ toys and labels each with the same selling price. He sells $8$ toys initially at $20\%$ discount on the labeled price. Then he sells the remaining $4$ toys at an additional $25\%$ discount on the discounted price. Thus, he gets a total of $\text{Rs }2112,$ and makes a $10\%$ profit. With no discounts, his percentage of profit would have been 

  1. $60$
  2. $55$
  3. $50$
  4. $54$
in Quantitative Aptitude retagged by
2.7k points
129 views

1 Answer

1 vote
1 vote
Let the cost price and marked price of each toy be $\text{c}$ and $\text{m},$ respectively.

Overall selling price $ = 8 (0.8 \; \text{m}) + 4 \left( \frac{3}{4} \times 0.8 \; \text{m} \right) = 6.4 \; \text{m} + 2.4 \; \text{m} = 8.8 \; \text{m}$

Now, $110 \% \; \text{of} \;12 \; \text{c} = 8.8 \; \text{m}$

$\Rightarrow \frac{110}{100} \times 12 \; \text{c} = 8.8 \; \text{m}$

$\Rightarrow \boxed{3 \; \text{c} = 2 \; \text{m}}$

Overall cost price $ = 12 \times \text{c}= 12 \times \frac{2 \; \text{m}}{3}= 8 \; \text{m}$

$\therefore$ Required profit percentage $ = \left( \frac{12 \; \text{m} – 8 \; \text{m}}{8 \; \text{m}} \right) \times 100 \% = \frac{4 \; \text{m}}{8 \; \text{m}} \times 100 \% = 50 \%.$

Correct Answer $: \text{C}$
edited by
10.3k points

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true