in Quantitative Aptitude retagged by
108 views
1 vote
1 vote
The number of pairs of integers $(x,y)$ satisfying $ x \geq y \geq – 20 $ and $ 2x + 5y = 99 $ is
in Quantitative Aptitude retagged by
2.7k points
108 views

1 Answer

1 vote
1 vote

Given that,

  • $x \geq y \geq 20 \quad \longrightarrow (1)$
  • $ 2x + 5y = 99 \quad \longrightarrow (2)$

From equation $(2),$ we get.

$x = \frac{99 – 5y}{2}$

Now, we can put the value of $x$ in equation $(1),$ we get.

$\frac{99 – 5y}{2} \geq y \geq – 20 \quad \longrightarrow (3)$

First we take,

$\frac{99 – 5y}{2} \geq y $

$ \Rightarrow 2y \leq 99 – 5y $

$ \Rightarrow 7y \leq 99 $

$ \Rightarrow y \leq \frac{99}{7}$

$ \Rightarrow y \leq 14.1428$

$ \Rightarrow y = \left \lfloor  14.1428 \right \rfloor $

$ \Rightarrow \boxed{y = 14}$

So, $\boxed{ – 20 \leq y \leq 14} \quad \longrightarrow (4)$

From equation $(2),$ we get

$\underbrace{2x}_{\text{Always even}} = \underbrace{99 – 5y}_{\text{Even}}$

  • $5y \rightarrow \text{odd}$
  • $y \rightarrow \text{odd}$

Therefore, we have to find out all the odd integers from the range of $ y \in [– 20, 14],$ and for each such value of $y,$ we will find the unique of $x.$

Odd integer of $ y : ( \;\underbrace{– 19, – 17, – 15, – 13, – 11, – 9, – 7, – , 5, – 3, – 1}_{\text{Negative integers}}\;, \; \underbrace{1, 3, 5, 7, 9, 11, 13}_{\text{Positive integers}}\;)$

So, the total number of integers that, $y$ can takes is $17.$

$\therefore$ The number of pairs of integers $(x,y)$ is $17.$

Correct Answer $:17$

edited by
10.3k points
Answer:

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true