in Quantitative Aptitude retagged by
206 views
1 vote
1 vote

The number of real$-$valued of the equation  $2^{x}+2^{-x}=2-(x-2)^{2}$ is

  1. infinite
  2. $1$
  3. $0$
  4. $2$
in Quantitative Aptitude retagged by
2.7k points
206 views

1 Answer

1 vote
1 vote
Given that, $2^{x} + 2^{-x} = 2 – (x – 2)^{2}$

$\Rightarrow 2^{x} + \frac{1}{2^{x}} = 2 – (x – 2)^{2} \quad \longrightarrow (1)$

We know that, $\text{AM} \geq \text{GM}$

$\Rightarrow \frac{2^{x} + \frac{1}{2^{x}}}{2} = \sqrt{ 2^{x} \cdot \frac{1}{2^{x}}}$

$\Rightarrow \boxed{ 2^{x} + \frac{1}{2^{x}} \geq 2}$

The minimum value of $2^{x} + \frac{1}{2^{x}}$ is $2,$ when $x=0.$

So, it follows $\text{LHS} \geq 2.$

And, $2 – (x-2)^{2} \leq 2$

$\Rightarrow – (x-2)^{2} \leq 0$

$\Rightarrow (x-2)^{2} \geq 0$

$\Rightarrow \boxed{x \geq 2}$

The maximum value of $2 – (x-2)^{2}$ is $2,$ when $x=2.$

Hence, there is no value of $x.$

Correct Answer$: \text{C}$
edited by
10.3k points
Answer:

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true