retagged by
515 views

1 Answer

1 votes
1 votes

Given that, equation $(x^{2} – 7x + 11)^{x^{2} – 13x + 42} = 1 \quad \longrightarrow (1)$

We know that $a^{b} = 1$

  1. If $ a = 1$
  2.  If $ b = 0, a \neq 0$
  3. If $ a = -1, b = \text{even}$

$\textbf{Case 1:}\; x^{2} – 7x + 11 = 1$

$ \Rightarrow x^{2} – 7x + 10 = 0$

$ \Rightarrow x^{2} – 5x -2x + 10 = 0$

$ \Rightarrow x (x-5) -2 (x-5) = 0$

$ \Rightarrow (x-5)(x-2) = 0$

$ \Rightarrow \boxed {x = 2,5}$

$\textbf{Case 2:} \;x^{2} – 13x + 42 = 0 $

$ \Rightarrow x^{2} -6x -7x + 42 = 0$

$ \Rightarrow x(x-6) – 7(x-6) = 0$

$ \Rightarrow (x-6)(x-7) = 0 $

$ \Rightarrow \boxed{ x= 6,7}$

$\textbf{Case 3:}\; x^{2} – 7x + 11 = – 1$

$ \Rightarrow x^{2} – 7x + 12 = 0 $

$ \Rightarrow x^{2} – 4x – 3x + 12 = 0$

$ \Rightarrow x(x-4) – 3(x-4) = 0$

$ \Rightarrow (x-4)(x-3) = 0$

$ \Rightarrow \boxed{x = 3,4}$

And, $x^{2} – 13x + 42 = \text{even}$

$x^{2} – 13x + 42 = 0$

This is the same as case $2.$

$\therefore$ There are $6$ distinct positive integer-valued solutions possible.

Correct Answer$: \text{A}$

edited by
Answer:

Related questions

1 votes
1 votes
1 answer
1
soujanyareddy13 asked Sep 16, 2021
516 views
The number of real$-$valued of the equation $2^{x}+2^{-x}=2-(x-2)^{2}$ isinfinite$1$$0$$2$
2 votes
2 votes
1 answer
2
soujanyareddy13 asked Sep 16, 2021
486 views
If $x=\left ( 4096 \right )^{7+4\sqrt{3}}$, then which of the following equals $64$?$\frac{x^{7}}{x^{2\sqrt{3}}}$$\frac{x^{7}}{x^{4\sqrt{3}}}$$\frac{x\frac{7}{2}}{x\frac{...
1 votes
1 votes
1 answer
3
soujanyareddy13 asked Sep 16, 2021
521 views
If $a, b$ and $c$ are positive integers such that $ab=432, bc=96$ and $c<9,$ then the smallest possible value of $a+b+c$ is$56$$59$$49$$46$
1 votes
1 votes
1 answer
5
soujanyareddy13 asked Sep 16, 2021
667 views
The number of distinct real roots of the equation $\left ( x+\frac{1}{x}\right )^{2}-3\left ( x+\frac{1}{x} \right )+2= 0$ equals