in Quantitative Aptitude edited by
147 views
1 vote
1 vote

The mean of all $4-$digit even natural numbers of the form $`aabb\text{’},$ where $a>0,$ is

  1. $5050$
  2. $4466$
  3. $5544$
  4. $4864$
in Quantitative Aptitude edited by
2.7k points
147 views

1 Answer

1 vote
1 vote

Given that, $4 \; \text{-digit}$ even natural numbers of the form $`aabb\text{’}, a>0.$

Now,

  • $\underline{a} \quad \underline{a} \quad \underline{b} \quad \underline{b}$
  • $1 \quad 1 \quad {\color{red} {0}} \quad {\color{red} {0}}$
  • $1 \quad 1 \quad {\color{blue} {2}} \quad {\color{blue} {2}}$
  • $1 \quad 1 \quad {\color{purple} {4}} \quad {\color{purple} {4}}$
  • $1 \quad 1 \quad {\color{green} {6}} \quad {\color{green} {6}}$
  • $1 \quad 1 \quad \underbrace{{\color{magenta} {8}} \quad {\color{magenta} {8}}}_{5}$
  • $\vdots \quad \;\vdots \quad \;\vdots \quad \vdots$
  • $9 \quad 9 \quad {\color{red} {0}} \quad {\color{red} {0}}$
  • $9 \quad 9 \quad {\color{blue} {2}} \quad {\color{blue} {2}}$
  • $9 \quad 9 \quad {\color{purple} {4}} \quad {\color{purple} {4}}$
  • $9 \quad 9 \quad {\color{green} {6}} \quad {\color{green} {6}}$
  • $9 \quad 9 \quad \underbrace{{\color{magenta} {8}} \quad {\color{magenta} {8}}}_{5}$

Total possibilities $ = 9 \times 5 = 45 $

$\boxed{\text{Average} = \frac{\text{Sum of possibilities}}{\text{Number of possibilities}}}$

Sum of possibilities $ = 5 \times (1100 + 2200 +  \dots + 9900) + 9 \times (00 + 22 + 44 + 66 + 88)$

$\qquad \qquad = 5 \times 100 \times 11 \times (1 + 2 + 3 + \dots + 9) + 9 \times 11 \times ( 0 + 2 + 4 + 6 + 8)$

$ \qquad \qquad = 5500 \times 45 + 9 \times 11 \times 20$

$\text{Average} = \frac{ 5500 \times 45 + 9 \times 11 \times 20}{45}$

$\qquad \qquad = \frac{5500 \times 45}{45} + \frac{9 \times 11 \times 20}{45} = 5500 + 44 = 5544$

$\therefore$ The required mean (average) is $5544.$


$\textbf{Short Method:}$

First , $4 \; \text{digit}$ even numbers is $aabb = 1100$

Last $4 \; \text{digit}$ even number in $aabb = 9988$

$\therefore$ The mean (average) $ = \frac{1100+9988}{2} = \frac{11088}{2} = 5544.$

Correct Answer$: \text{C}$

edited by
10.3k points
Answer:

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true