retagged by
723 views
1 votes
1 votes
A gentleman decided to treat a few children in the following manner. He gives half of his total stock of toffees and one extra to the first child, and then the half of the remaining stock along with one extra to the second and continues giving away in this fashion. His total stock exhausts after he takes care of $5$ children. How many toffees were there in his stock initially?
retagged by

1 Answer

1 votes
1 votes

Let $x$ be the number of toffees in the stock initially.

$$\begin{array}{} & \text{Gives} & \text{Left with} \\ 1^{\text{st}} & \frac{x}{2} + 1 & \frac{x}{2}-1 \\ 2^{\text{nd}} & \frac{1}{2}\left( \frac{x}{2} – \right) + 1 & \frac{1}{2}\left(\frac{x}{2} – 1\right) – 1 \\ 3^{\text{rd}} & \frac{1}{2}\left[ \frac{1}{2}\left(\frac{x}{2} – 1\right) – 1 \right] + 1 & \frac{1}{2}\left[ \frac{1}{2}\left(\frac{x}{2} – 1\right) – 1 \right]-1 \\ \vdots & \vdots \quad \vdots \quad \vdots & \vdots \quad \vdots \quad \vdots \\ 5^{\text{th}} &  \vdots \quad \vdots \quad \vdots & 0  \end{array}$$
His total stock exhausts after he takes the case of $5$ children.

So, $ \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2}x-1 \right) – 1 \right) – 1 \right) – 1 \right) – 1 = 0$

$ \Rightarrow \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{4}x – \frac{1}{2} – 1 \right) – 1 \right) – 1 \right) – 1 = 0$

$ \Rightarrow  \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{8}x – \frac{1}{4} – \frac{1}{2} – 1 \right) – 1 \right) – 1 = 0$

$ \Rightarrow \frac{1}{2} \left(\frac{1}{16}x – \frac{1}{8} – \frac{1}{4} – \frac{1}{2} – 1 \right) – 1= 0$

$ \Rightarrow \frac{1}{32}x – \frac{1}{16} – \frac{1}{8} – \frac{1}{4} – \frac{1}{2} – 1= 0$

$ \Rightarrow \frac{x – 2 – 4 – 8 – 16 – 32}{32} = 0$

$ \Rightarrow x – 62 = 0$

$ \Rightarrow \boxed{x = 62}$

$\therefore 62$ toffees were there in his stock initially.


$\textbf{Second Method:}$

$$\begin{array}{|c|c|c|c|} \hline \text{Toffees} & \text{Children} & \text{Gives} & \text{Left with} \\\hline  a\;(\text{Initially}) & 1^{\text{st}} & \frac{a}{2} + 1 & \frac{a}{2}-1 \\  b & 2^{\text{nd}} & \frac{b}{2} + 1 & \frac{b}{2} – 1 \\ c & 3^{\text{rd}} & \frac{c}{2} + 1 & \frac{c}{2} – 1 \\  d & 4^{\text{th}} & \frac{d}{2} + 1 & \frac{d}{2} – 1 \\  e & 5^{\text{th}} & \frac{e}{2} + 1 & \underbrace{\frac{e}{2} – 1}_{0} \\\hline  \end{array} $$
Here, $\frac{e}{2} – 1 = 0$

$ \Rightarrow \frac{e}{2} = 1$

$ \Rightarrow \boxed{e=2}$

And, $\frac{d}{2} – 1 = e$

$ \Rightarrow \frac{d}{2} - 1 = 2$

$ \Rightarrow \frac{d}{2} = 3$

$ \Rightarrow \boxed{d = 6}$

Similarly $\frac{c}{2} – 1 = d$

$ \Rightarrow \frac{c}{2} - 1 = 6$

$ \Rightarrow \frac{c}{2} = 7$

$ \Rightarrow \boxed{c = 14}$

And, $\frac{b}{2} – 1 = c$

$ \Rightarrow \frac{b}{2} - 1 = 14$

$ \Rightarrow \frac{b}{2} = 15$

$ \Rightarrow \boxed{b = 30}$

And, $\frac{a}{2} – 1 = b$

$ \Rightarrow \frac{a}{2} - 1 = 30$

$ \Rightarrow \frac{a}{2} = 31$

$ \Rightarrow \boxed{a = 62}$

Correct Answer$: 62$

edited by
Answer:

Related questions

1 votes
1 votes
1 answer
1
soujanyareddy13 asked Sep 16, 2021
664 views
The number of distinct real roots of the equation $\left ( x+\frac{1}{x}\right )^{2}-3\left ( x+\frac{1}{x} \right )+2= 0$ equals
1 votes
1 votes
1 answer
2
soujanyareddy13 asked Sep 16, 2021
514 views
The number of real$-$valued of the equation $2^{x}+2^{-x}=2-(x-2)^{2}$ isinfinite$1$$0$$2$
1 votes
1 votes
1 answer
3
soujanyareddy13 asked Sep 16, 2021
514 views
How many distinct positive integer-valued solutions exist to the equation $\left ( x^{2}-7x+11 \right )^{(x^{2}-13x+42)} =1$?$6$$8$$2$$4$
2 votes
2 votes
1 answer
4
soujanyareddy13 asked Sep 16, 2021
484 views
If $x=\left ( 4096 \right )^{7+4\sqrt{3}}$, then which of the following equals $64$?$\frac{x^{7}}{x^{2\sqrt{3}}}$$\frac{x^{7}}{x^{4\sqrt{3}}}$$\frac{x\frac{7}{2}}{x\frac{...
1 votes
1 votes
1 answer
5
soujanyareddy13 asked Sep 16, 2021
520 views
If $a, b$ and $c$ are positive integers such that $ab=432, bc=96$ and $c<9,$ then the smallest possible value of $a+b+c$ is$56$$59$$49$$46$