in Quantitative Aptitude edited by
247 views
0 votes
0 votes

A semi-circle is drawn with $\text{AB}$ as its diameter. From $\text{C}$, a point on $\text{AB,}$ a line perpendicular to $\text{AB}$ is drawn meeting the circumference of the semi-circle at $\text{D.}$ Given that $\text{AC = 2 cm}$ and $\text{CD = 6 cm}$ the area of the semi-circle (in sq. cm) will be

  1. $32 \pi$
  2. $50 \pi$
  3. $40.5 \pi$
  4. $81 \pi$
  5. undeterminable
in Quantitative Aptitude edited by
13.4k points
247 views

1 Answer

0 votes
0 votes

Let CB = x cm.

From triangle  ACD, where angle ACD = 90'.

AD^2 = AC^2 + CD^2

          = 2 ^2 + 6 ^2

          =40.    -----------------(P) 

From triangle BCD, where angle BCD = 90'.

BD^2 = CB ^2 + CD ^2

           = x ^2 + 6 ^2 ---------(Q)

From triangle ABD, where angle ADB = 90'.

AB^2 = AD ^2 + BD ^2

=> (2 + x)^2 = 40+ (x^2+ 36)                  //from eqn- P and Q.

=> 4 + 4x + x ^2= 76 + x^2

=>  x = 72/4 = 18.

Diameter of cemi-circle = 2 + x = 2 + 18 = 20.

So, radius = 10 cm. 

Hence, area of semi-circle = $\pi$(10 ^2 ) / 2.

                                                 = $50\pi$.

Ans- 2. 

  

by
1.5k points

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true