in Quantitative Aptitude edited by
349 views
0 votes
0 votes

If $a/b=1/3, b/c=2, c/d=1/2, d/e=3$ and $e/f=1/4$ then what is the value of $abc/def?$

  1. $3/8$
  2. $27/8$
  3. $3/4$
  4. $27/4$
  5. $1/4$
in Quantitative Aptitude edited by
13.6k points
349 views

2 Answers

1 vote
1 vote
Given $\frac{a}{b}=\frac{1}{3}$                 $\frac{b}{c}={2}$                      $\frac{c}{d}=\frac{1}{2}$              

$\frac{d}{e}=3$                  $\frac{e}{f}=\frac{1}{4}$

 

b=3a=2c=d   => d=3a    

b=2c=d=3e => e =  $\frac{b}{3}$       

c = $\frac{d}{2} = \frac{3e}{2} = \frac{3f}{8}$  

 

$\frac{a}{d} *\frac{b}{e} * \frac{c}{f}$ =  $\frac{a}{3a} *\frac{b}{\frac{b}{3}} * \frac{c}{\frac{8c}{3}}$

=$\frac{3}{8}$
11.4k points
0 votes
0 votes
Given that:

$a/b=1/3,b/c=2,c/d=1/2,d/e=3,e/f=1/4$

Now calculate;

$\frac{a}{d}=(a/b)*(b/c)*(c/d)\implies(1/3)*(2)*(1/2)=1/3$

$\frac{b}{e}=(b/c)*(c/d)*(d/e)\implies (2)*(1/2)*(3)=3$

$\frac{c}{f}=(c/d)*(d/e)*(e/f)=(1/2)*(3)*(1/4)=3/8$

so $\frac{abc}{def}=(1/3)*(3)*(3/8)=\frac{3}{8}$

Option (A) is correct.
6.0k points

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true