in Quantitative Aptitude recategorized by
271 views
2 votes
2 votes

In an acute angled triangle $ABC$, if $\tan \left(A+B-C \right)=1$ and  $\sec \left(B+C-A \right)=2$, Find angle $A$.

  1. $60^\circ$
  2. $45^\circ$
  3. $30^\circ$
  4. $90^\circ$
in Quantitative Aptitude recategorized by
12.0k points
271 views

1 Answer

0 votes
0 votes
Given: $\tan (A+B-C)=1$

$\implies \tan(A+B-C)=\tan 45^\circ$

$\implies (A+B-C)=45^\circ$ …...(i)

In same way $\sec(B+C-A)=2$

$\implies \sec(B+C-A)=\sec 60^\circ$

$\implies (B+C-A)=60^\circ$……..(ii)

from equation (i) & (ii)

                         $2B=105^\circ\implies B=52.5^\circ$

For any triangle

$\because \angle A+\angle B+\angle C=180^\circ$

$\implies A+B=180^\circ-C$…..(iii)

from equation (i)&(iii),

$\implies 180^\circ-C-C=45^\circ$

$\implies 2C=135^\circ \implies 67.5^\circ$

now form equation (iii) we get:

$\angle A+52.5^\circ=180^\circ-67.5^\circ$

$\angle A=60^\circ$

Option $(A)$ is correct.
edited by
4.7k points

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true