# NIELIT 2019 Feb Scientist D - Section D: 24

1 vote
61 views

$\ Sin^{-1}\left [ \frac{3}{5} \right ] + \tan^{-1}\left [ \frac{1}{7} \right ]=$

1. $\frac{\pi }{4}$
2. $\frac{\pi }{2}$
3. $\ Cos^ {-1} \frac{4}{5}$
4. $\pi$

recategorized

$\textrm{let us assume$sin^{-1}(\frac{3}{5})=\theta$}$

$\implies$ $\sin\theta=\frac{3}{5}$

$\because \sin\theta=\frac{perpendicular}{base}$

$\textrm{by using pythagoras theorem we can find the base of right angle triangle }$

$\implies$ $H^2=B^2+P^2$

$\textrm{base =4}$

$\therefore$ $\tan\theta=\frac{perpendicular}{base}$

$\implies$ $\tan\theta=\frac{3}{4}$

$\implies$ $\theta=\tan^{-1}\frac{3}{4}$

$\therefore$ $tan^{-1}\frac{3}{4}+tan^{-1}\frac{1}{7}$

$\because \tan^{-1}(A+B)=tan^{-1}(\frac{A+B}{1-AB})$

$\implies$ $\tan^{-1}(\frac{\frac{3}{4}+\frac{1}{7}}{1-\frac{3}{4}*\frac{1}{7}})$

$\implies$ $tan^{-1}(1)$

$\because tan^{-1}(1)=\frac{\pi}{4}$

$\textrm{option A is correct.}$
3.2k points 4 10 59

## Related questions

1
74 views
If $\ Sinx+Sin^{2} x=1$ then $\ Cos^{8}x+ 2 \ Cos^{6} x+ \ Cos^{4} x$ equals to : $0$ $-1$ $1$ $2$
1 vote
2
89 views
If $\theta$ is an acute angle and $\tan\theta+\cot\theta =2$, Find the value of $\tan ^{7}\theta +\cot ^{7}\theta$. $-2$ $1$ $2$ $0$
If $x=\cos1^{\circ} \cdot \cos2^{\circ} \cdot \cos3^{\circ}\dots\cos89^{\circ}$ and $y=\cos2^{\circ}\cos6^{\circ}\cos10^{\circ}\dots\cos86^{\circ}$ then what the integer is nearest to $\dfrac{2}{7}\log _{2} \left( \dfrac{y}{x}\right )$is: $19$ $17$ $15$ $21$
The expressions $\dfrac{\tan A}{1-\cot A}+\dfrac{\cot A}{1-\tan A}$ can be written as: $\sin A \ \cos A+1$ $\sec A \ cosec A+1$ $\tan A+ \cot A+1$ $\sec A +cosec A$
If $cosec\theta-\sin\theta=1$ and $\sec\theta-\cos\theta=m$, then $l^{2}m^{2}(l^{2}+m^{2}+3)$ equals to: $1$ $2$ $2 \sin\theta$ $\sin\theta \cos\theta$