in Quantitative Aptitude recategorized by
298 views
0 votes
0 votes

$\left [\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^{2}}+\frac{4}{1+x^{4}}+\frac{8}{1+x^{8}} \right ]$ equal to :

  1. $1$
  2. $0$
  3. $\frac{8}{1-x^{8}}$
  4. $\frac{16}{1-x^{16}}$
in Quantitative Aptitude recategorized by
12.6k points
298 views

1 Answer

1 vote
1 vote
$\left [ \frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}\right ]$

$\implies \left [ \frac{2}{1-x^2}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}\right ]$

$\implies \left [ \frac{4}{1-x^4}+\frac{4}{1+x^4}+\frac{8}{1+x^8}\right ]$

$\implies \left [ \frac{8}{1-x^8}+\frac{8}{1+x^8}\right ]$

$\implies \left [ \frac{16}{1-x^{16}}\right ]$

Note: take the first 2 term's in each steps and solve them using LCM.

Option $D$ is correct here.
5.2k points

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true