$\textrm{Given that:}$ $log_{10}(2^x+x-41)=x(1-log_{10}5)$
$\because log_aa=1$ $\textrm{We can use this property here, $log_{10}10=1$}$
$\implies$ $log_{10}(2^x+x-41)=x(log_{10}10-log_{10}5)$
$\implies$ $log_{10}(2^x+x-41)=x(log_{10}(\frac{10}{5}))$ $(\because log_ax-log_ay=log_a(\frac{x}{y}))$
$\implies$ $log_{10}(2^x+x-41)=x(log_{10}2)$
$\implies$ $log_{10}(2^x+x-41)=log_{10}2^x$ $(\because log_ax^n=n*log_ax)$
$\textrm{compair both side we get:}$
$\implies$ $2^x+x-41=2^x$
$\implies$ $x=41$
$\textrm{Option b is correct.}$