# NIELIT 2019 Feb Scientist C - Section D: 3

97 views

The line $x+y=4$ divides the line joining $\text{(-1,1) & (5,7)}$ in the ratio $\lambda : 1$ then the value of $\lambda$ is:

1. $2$
2. $3$
3. $\dfrac{1}{2}$
4. $1$

recategorized

Ans is option (C)

By using the two point form of equation of a straight line,  (for the points  $(-1,1)$ and $(5,7)$)

$y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\times(x-x_{1})$

By substituting the points in the given formula, we get the equation of the straight line as  $y=x+2$

So, now the intersection point of $y=x+2$ and $x+y=4$ is $(1,3)$

Since the line $x+y=4$ divides the line $y=x+2$ in the ratio $\lambda:1$, we use the section formula to determine the value of $\lambda.$  (Ref: Section Formula)

$\therefore$  $\frac{\lambda(5)+1(-1)}{\lambda+1}=1$     $\Rightarrow$   $4\lambda=2$   $\Rightarrow$   $\lambda=\frac{1}{2}$

238 points 2 2 4

## Related questions

1
80 views
Let $(x_{1},4),(-2,y_{1})$ lies on the line joining the points $(2,-1),(5,-3)$ then the point $P(x_{1},y_{1})$ lies on the line: $6(x+y)-25=0$ $2x+6y+1=0$ $2x+3y-6=0$ $6(x+y)+25=0$
2
58 views
The image of the point $\left (3, 8 \right)$ in the line $x+3y=7$ is : $\left (1, 4 \right)$ $\left (4, 1 \right)$ $\left (-1, -4 \right)$ $\left (-4, -1 \right)$
The minute hand is $10$ cm long. Find the area of the face of the clock described by the minute hand between $9$ a.m and $9:35$ a.m. ${183.3\ cm^{2}}$ ${366.6\ cm^{2}}$ ${244.4\ cm^{2}}$ ${188.39\ cm^{2}}$
Determine $a+b$ such that the following system of equations: $2x-(a-4)y=2b+1 \text{ and }4x-(a-1)y=5b-1$ infinite solutions. $11$ $9$ $10$ $8$