in Quantitative Aptitude recategorized by
0 votes
0 votes

A cylindrical box of radius $5$ cm contains $10$ solid spherical balls each of radius $5$ cm. If the topmost ball touches the upper cover of the box, then the volume of the empty space in the box is:

  1. $\dfrac{2500\pi}{3}$ cubic cm
  2. $500\pi$ cubic cm
  3. $2500\pi$ cubic cm
  4. $\dfrac{5000\pi}{3}$ cubic cm
in Quantitative Aptitude recategorized by
12.0k points

1 Answer

0 votes
0 votes

Ans is option (A)

Height of the cylinder $=10\times(2\times5cm)=100cm$ .

$\therefore$  Volume of empty space in the box:  $\pi r^{2}h-(10\times\frac{4}{3}\times \pi \times r^{3})$  cubic cm.

$\Rightarrow$  $(\pi \times 25\times50)-(10\times\frac{4}{3}\times \pi \times 5^{3})=\frac{2500}{3}$ cubic cm.

438 points

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true