# NIELIT 2019 Feb Scientist C - Section C: 19

1 vote
85 views

If $a^{x}=b, b^{y}=c$ and $c^{z}=a$, then $xyz$ equals:

1. $abc$
2. $\dfrac{1}{abc}$
3. $1$
4. None

edited

Take log of both side and solve.
172 points 1 2 4
$\textrm{Given that: }$

$a^x=b ….(1)$

$b^y=c ….(2)$

$c^z=a….(3)$

$\textrm{taking log in above equations we get:}$

$\implies$ $xlog_2a=log_2b$

$\implies$ $x=\frac{log_2b}{log_2a}….(4)$

$\textrm{in the same way}$

$y=\frac{log_2c}{log_2b}….(5)$

$z=\frac{log_2a}{log_2c}…..(6)$

$\textrm{multiply equations (4),(5),(6).}$

$\implies$ $x*y*z=\frac{log_2b}{log_2a}*\frac{log_2c}{log_2b}*\frac{log_2a}{log_2c}$

$\implies$ $x*y*z=1$

$\textrm{Option C is correct.}$
3.2k points 4 10 59

## Related questions

1
59 views
The simplified form of $\left[ \left ( \left( \dfrac{a+1}{a-1}\right)^2+3 \right)\div \left( \left( \dfrac{a+1}{a-1}\right)^2+3\right) \right] \div \left [\left( \dfrac{a^{3}+1}{a^{3}-1}\right)-\dfrac{2a}{a-1} \right]$ is: $a-1$ $1-a$ $-1$ $1$
2
76 views
$₹6500/-$ were divided among a certain number of persons. If there had been $15$ more persons, each would have got $₹30/-$ less. Find the original number of persons. $50$ $60$ $45$ $55$
A charitable trust donates $28$ different books of Maths, $16$ different books of science and $12$ different books of social science to poor students. Each student is given maximum number of books of only one subject of their interest and each student got equal number of books. Find the total number of students who got books. $14$ $10$ $12$ $15$
The factors of $(x^{2}+4y^{2}+4y-4xy-2x-8)$ are: $(x-2y-4)(x-2y+2)$ $(x-y+2)(x-4y-4)$ $(x+2y-4)(x+2y+2)$ None of these
If $x=\dfrac{\sqrt{10}+\sqrt{2}}{2}, \: \: y=\dfrac{\sqrt{10}-\sqrt{2}}{2}$ then the value of $\log _{2}(x^{2}+xy+y^{2})$ is: $0$ $1$ $2$ $3$