in Quantitative Aptitude retagged by
177 views
1 vote
1 vote

If x is a real number, then $\sqrt{\log _{e}\frac{4x-x^{2}}{3}}$ is a real number if and only if

  1. $1\leq x\leq 2$
  2. $-3\leq x\leq 3$
  3. $1\leq x\leq 3$
  4. $-1\leq x\leq 3$
in Quantitative Aptitude retagged by
13.4k points
177 views

1 Answer

1 vote
1 vote

Ans is option (C)

For the value inside the square root to be real, it should be greater than or equal to zero.

$\therefore$   log$_{e}\frac{4x-x^{2}}{3}\geqslant0$

$\Rightarrow$  $\frac{4x-x^{2}}{3}\geqslant1$

$\Rightarrow$  $\frac{4x-x^{2}}{3}-1\geqslant0$

$\Rightarrow$  $\frac{4x-x^{2}-3}{3}\geqslant0$

Multiplying by 3 on both sides inequality, we get   $4x-x^{2}-3\geqslant0$

Multiplying by -1 on both sides inequality, we get   $x^{2}-4x+3\leqslant0$

$\Rightarrow$   $(x-1)(x-3)\leqslant0$     $\Rightarrow$   $x\in[1,3]$

438 points
Answer:

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true