# CAT2019-2: 86

138 views

What is the largest positive integer $n$ such that $\frac{n^{2}+7n+12}{n^{2}-n-12}$ is also a positive integer?

1. $8$
2. $12$
3. $16$
4. $6$

edited
0
Option (D)
0

@haralk

Option D would have been correct when they ask the question as “For what value of $n$ the result of the following expression $\cfrac{n^{2}+7n+12}{n^{2}-n-12}$ is maximum?”

$\cfrac{n^{2}+7n+12}{n^{2}-n-12} = \cfrac{n^{2}+3n+4n+12}{n^{2}+3n-4n-12}$

$= \cfrac{n(n+3)+4(n+3)}{n(n+3)-4(n+3)}$$\require{cancel}$

$= \cfrac{\cancel{(n+3)}(n+4)}{\cancel{(n+3)}(n-4)} = \cfrac{(n+4)}{(n-4)}$

$\therefore \cfrac{n^{2}+7n+12}{n^{2}-n-12} = \cfrac{(n+4)}{(n-4)}$

Now let’s substitute $n$ values given in options

1. $n = 8$

$\cfrac{(n+4)}{(n-4)} = \cfrac{(8+4)}{(8-4)} =\cfrac{(12)}{(4)} = 3$ (Positive Integer)

1. $n = 12$

$\cfrac{(n+4)}{(n-4)} = \cfrac{(12+4)}{(12-4)} =\cfrac{(16)}{(8)} = 2$ (Positive Integer)

1. $n = 16$

$\cfrac{(n+4)}{(n-4)} = \cfrac{(16+4)}{(16-4)} =\cfrac{(20)}{(12)} \sim 1.67$ (Not an integer)

1. $n = 6$

$\cfrac{(n+4)}{(n-4)} = \cfrac{(6+4)}{(6-4)} =\cfrac{(10)}{(2)} = 5$ (Positive Integer)

Options A, B, D have produced the result as a positive integer. In question, given that we need to find “largest positive integer $n$ such that $\cfrac{n^{2}+7n+12}{n^{2}-n-12}$ is also a positive integer.” n

Hence correct answer is Option B.

Note: Option D would have been correct when they ask the question as “For what value of $n$ the result of the following expression $\cfrac{n^{2}+7n+12}{n^{2}-n-12}$ is maximum?”

114 points 2 30 41
edited

## Related questions

1
173 views
The salaries of Ramesh, Ganesh and Rajesh were in the ratio $6:5:7$ in $2010$, and in the ratio $3:4:3$ in $2015$. If Ramesh’s salary increased by $25$% during $2010-2015$, then the percentage increase in Rajesh’s salary during this period is closest to $8$ $7$ $9$ $10$
2
94 views
If x is a real number, then $\sqrt{\log _{e}\frac{4x-x^{2}}{3}}$ is a real number if and only if $1\leq x\leq 2$ $-3\leq x\leq 3$ $1\leq x\leq 3$ $-1\leq x\leq 3$
In an examination, Rama's score was one-twelfth of the sum of the scores of Mohan and Anjali. After a review, the score of each of them increased by $6$. The revised scores of Anjali, Mohan, and Rama were in the ratio $11:10:3$. Then Anjali's score exceeded Rama's score by $24$ $26$ $32$ $35$
How many pairs $(m,n)$ of positive integers satisfy the equation $m^{2}+105=n^{2}$?____
Anil alone can do a job in $20$ days while Sunil alone can do it in $40$ days. Anil starts the job, and after $3$ days, Sunil joins him. Again, after a few more days, Bimal joins them and they together finish the job. If Bimal has done $10$% of the job, then in how many days was the job done? $14$ $13$ $15$ $12$