in Quantitative Aptitude retagged by
485 views
1 vote
1 vote

What is the largest positive integer $n$ such that $\frac{n^{2}+7n+12}{n^{2}-n-12}$ is also a positive integer?

  1. $8$
  2. $12$
  3. $16$
  4. $6$
in Quantitative Aptitude retagged by
13.4k points
485 views

2 Comments

Option (D)
0
0
edited by

@haralk

Option D would have been correct when they ask the question as “For what value of $n$ the result of the following expression $\cfrac{n^{2}+7n+12}{n^{2}-n-12}$ is maximum?”

0
0

1 Answer

1 vote
1 vote

$\cfrac{n^{2}+7n+12}{n^{2}-n-12} = \cfrac{n^{2}+3n+4n+12}{n^{2}+3n-4n-12}$

$= \cfrac{n(n+3)+4(n+3)}{n(n+3)-4(n+3)}$$\require{cancel}$

$= \cfrac{\cancel{(n+3)}(n+4)}{\cancel{(n+3)}(n-4)} = \cfrac{(n+4)}{(n-4)}$

$\therefore \cfrac{n^{2}+7n+12}{n^{2}-n-12} = \cfrac{(n+4)}{(n-4)}$

Now let’s substitute $n$ values given in options

  1. $ n = 8 $

$\cfrac{(n+4)}{(n-4)} = \cfrac{(8+4)}{(8-4)} =\cfrac{(12)}{(4)} = 3$ (Positive Integer)

  1. $ n = 12 $

$\cfrac{(n+4)}{(n-4)} = \cfrac{(12+4)}{(12-4)} =\cfrac{(16)}{(8)} = 2$ (Positive Integer)

  1. $ n = 16 $

$\cfrac{(n+4)}{(n-4)} = \cfrac{(16+4)}{(16-4)} =\cfrac{(20)}{(12)} \sim 1.67$ (Not an integer)

  1. $ n = 6 $

$\cfrac{(n+4)}{(n-4)} = \cfrac{(6+4)}{(6-4)} =\cfrac{(10)}{(2)} = 5$ (Positive Integer)

Options A, B, D have produced the result as a positive integer. In question, given that we need to find “largest positive integer $n$ such that $\cfrac{n^{2}+7n+12}{n^{2}-n-12}$ is also a positive integer.” n

Hence correct answer is Option B.

Note: Option D would have been correct when they ask the question as “For what value of $n$ the result of the following expression $\cfrac{n^{2}+7n+12}{n^{2}-n-12}$ is maximum?”

edited by
152 points
Answer:

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true