in Quantitative Aptitude retagged by
1 vote
1 vote

Let $A$ be a real number. Then the roots of the equation $x^{2}-4x-\log _{2}A=0$ are real and distinct if and only if

  1. $A> \frac{1}{16}$
  2. $A> \frac{1}{8}$
  3. $A< \frac{1}{16}$
  4. $A< \frac{1}{8}$
in Quantitative Aptitude retagged by
13.4k points

1 Answer

1 vote
1 vote

Ans should be an option (A)

For a quadratic equation to have real and distinct roots, it’s discriminant should be strictly greater than zero.

$\therefore$   $b^{2}-4ac\gt0$

$\Rightarrow$  $16-4(-\log_{2}A)\gt0$   $\Rightarrow$   $\log_{2}A\gt-4$   $\Rightarrow$   $A\gt \frac{1}{16}$

438 points

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true