retagged by
524 views
2 votes
2 votes

The base of a regular pyramid is a square and each of the other four sides is an equilateral triangle, length of each side being $20$ cm. The vertical height of the pyramid, in cm, is

  1. $8\sqrt{3}$
  2. $12$
  3. $5\sqrt{5}$
  4. $10\sqrt{2}$
retagged by

1 Answer

1 votes
1 votes

We can draw the diagram, using the given information in the question.

The base of a regular pyramid is square. That means $\square\text{WXYZ}$ will be the square.

The four sides of a regular pyramid is an equilateral triangle. That means $\triangle \text{AXW}, \triangle \text{AWZ}, \triangle \text{AXY}$ and $\triangle \text{AYZ}$ are equilateral triangle, and side of each equilateral triangle is $20\; \text{cm}.$



Now, consider the  $\triangle \text{AYZ}.$ 

Let $`h\text{’ cm}$ be the height  of a triangle.



In $\triangle \text{ABY},$ using the Pythagoras’ theorem,

$\boxed{ \text{(AY)}^{2} = \text{(AB)}^{2} + \text{(YB)}^{2}}$

$ \Rightarrow (20)^{2} = (h)^{2} + (10)^{2}$

$ \Rightarrow 400 = h^{2} + 100$

$ \Rightarrow h^{2} = 300$

$ \Rightarrow h = \sqrt{300}$

$ \Rightarrow h = \sqrt{ 3 \times 100}$

$ \Rightarrow h = \text{AB} = 10 \sqrt{3}\; \text{cm}$

Here, $ \text{OB} = \frac{\text{side of the square}}{2} = \frac{\text{XY}}{2} = \frac{20}{2} = 10\; \text{cm}.$

In $ \triangle \text{AOB},$ using the Pythagoras’ theorem,

$ \text{(AB)}^{2} = \text{(OA)}^{2} + \text{(OB)}^{2}$

$ \Rightarrow (10 \sqrt{3})^{2} = \text{(OA)}^{2} + (10)^{2}$

$ \Rightarrow 300-100 = \text{(OA)}^{2}$

$ \Rightarrow \text{(OA)}^{2} = 200$

$ \Rightarrow \text{OA} = \sqrt{200} = \sqrt{2 \times 100} $

$ \Rightarrow \boxed {\text{OA} = 10 \sqrt{2}\; \text{cm}}$

$\therefore$ The vertical height of the pyramid $ = 10 \sqrt{2}\; \text{cm}.$

Correct Answer $: \text{D}$

edited by
Answer:

Related questions

2 votes
2 votes
1 answer
2
go_editor asked Mar 8, 2020
598 views
If the rectangular faces of a brick have their diagonals in the ratio $3:2\sqrt{3}:\sqrt{15}$, then the ratio of the length of the shortest edge of the brick to that of i...
1 votes
1 votes
1 answer
3
1 votes
1 votes
1 answer
4
go_editor asked Mar 20, 2020
495 views
If x is a real number, then $\sqrt{\log _{e}\frac{4x-x^{2}}{3}}$ is a real number if and only if$1\leq x\leq 2$$-3\leq x\leq 3$$1\leq x\leq 3$$-1\leq x\leq 3$
1 votes
1 votes
1 answer
5